

AFRL-IF-RS-TR-2004-57

Final Technical Report
March 2004

DYNAMIC SENSOR NETWORKS

University of Southern California at Marina Del Rey

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. H557

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-57 has been reviewed and is approved for publication

APPROVED: /s/

SCOTT S. SHYNE
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2004

3. REPORT TYPE AND DATES COVERED
Final Jun 99 – Feb 03

4. TITLE AND SUBTITLE
DYNAMIC SENSOR NETWORKS

6. AUTHOR(S)
Brian Schott, Ronald Riley,
Mani Srivastava, and Igor Elgorriaga

5. FUNDING NUMBERS
C - F30602-99-1-0529
PE - 62301E
PR - H577
TA - 16
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
Information Science Institute
4676 Admiralty Way
Marina Del Rey California 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-57

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Scott S. Shyne/IFGA/(315) 330-4819/ Scott.Shyne@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The DSN team investigated hardware and software technologies for unattended ground sensor applications. Task 1:
Distribution and Aggregation includes node localization techniques, low-power data link protocols, power aware routing
protocols, and spatial addressing and routing. Task 2: Declarative Languages and Execution Environment includes
topographical soldier interface and a sensor network simulation environment for algorithm development, deployment
planning, and operational support. Finally, Task 3: Platforms include investigative hardware development to support
laboratory communications, processing, or localization experiments as well as open-source COTS PDA integration and
system software in support of the soldier interface.

15. NUMBER OF PAGES
243

14. SUBJECT TERMS
Unattended Ground Sensors, Wireless Networking, Embedded Linux

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

TABLE OF CONTENTS

1 Introduction... 1
2 Distribution and Aggregation .. 3

2.1 Modeling and Simulation.. 3
2.1.1 SensorSim ... 3
2.1.2 SensorVis .. 4

2.2 Communications and Networking Protocols .. 5
2.2.1 Spatial Addressing .. 5
2.2.2 Low-Power Network Routing... 7

2.3 GPS-less Localization... 7
3 Declarative Languages and Execution Environment .. 12

3.1 Graphical Soldier Interfaces ... 12
3.1.1 First Generation Graphical User Interface.. 12
3.1.2 Second Generation Graphical User Interface ... 14
3.1.3 Third Generation Graphical User Interface .. 15

3.2 Sensor Placement Tool ... 17
4 Platforms.. 20

4.1 Embedded Linux on IPAQ™.. 20
4.1.1 DSN Linux Contributions ... 21
4.1.2 Video Surveillance using IPAQ.. 22

4.2 GPS-Synchronized Communications.. 23
5 Field Experiment Summary... 26

5.1 SITEX00, 29 Palms, August 2000.. 26
5.2 SITEX01, 29 Palms, March 2001... 27
5.3 SITEX02, 29 Palms, November 2001... 28

6 Deliverables Summary.. 30
6.1 Deliverables for FY99... 30
6.2 Deliverables for FY00... 30
6.3 Deliverables for FY01... 31
6.4 Deliverables for FY02... 31

7 Personnel.. 32
7.1 USC Information Sciences Institute Personnel... 32
7.2 UCLA Personnel... 32
7.3 Virginia Tech Personnel ... 32

8 Publications ... 33
9 List of Acronyms... 35
10 List of Addenda... 36

 i

Appendix A: Dynamic Fine-grained Localization in Ad-hoc Networks of Sensors 38

Appendix B: On modeling networks of wireless microsensors 52

Appendix C: Tasking Distributed Sensor Networks 54

Appendix D: Simulating networks of wireless sensors 94

Appendix E: Energy efficient routing in wireless sensor networks 103

Appendix F: Distributed assignment of encoded MAC addresses in wireless sensor
 networks 108

Appendix G: Energy-aware wireless sensor networks 128

Appendix H: STEM: Topology management for energy efficient sensor networks 145

Appendix I: Optimizing Sensor Networks in the Energy-Density-Latency Design
 Space 155

Appendix J: Topology Management for Sensor Networks: Exploiting Latency and
 Density 166

Appendix K: On Communication Security in Wireless Ad-Hoc Sensor Networks 180

Appendix L: Dynamic Link Labels for Energy Efficent MAC Headers in Wireless
 Sensor Networks 186

 Appendix M: A Framework for Efficient and Programmable Sensor Networks 192

Appendix N: The Bits and Flops of the N-Hop Multilateration Primitive for Node
 Localization Problems 204

Appendix O: A Distributed Computation Platform for Wireless Embedded Sensing 218

Appendix P: Design and Implementation of a Framework for Efficient and
 Programmable Sensor Networks 224

 ii

LIST OF FIGURES

Figure 1: DSN Systems Concept .. 1
Figure 2: SensorSim Architecture... 4
Figure 3: SensorVis UCLA Campus Scenario.. 5
Figure 4: Spatial Address Reuse Example.. 6
Figure 5: Distributed Assignment Algorithm ... 6
Figure 6: Node Density Versus Average Address Size .. 7
Figure 7: Sensor Network with Known and Unknown Locations.. 8
Figure 8: Basic Multilateration ... 8
Figure 9: Iterative Multilateration... 9
Figure 10: Resolved Nodes Versus Beacon Densities.. 9
Figure 11: Collaborative Multilateration .. 10
Figure 12: Collaborative Sub-Trees.. 10
Figure 13: Iterative Multilateration Accuracy .. 11
Figure 14: Ultrasound and RSSI Platform Characterizations ... 11
Figure 15: Artist Conception of Graphical User Interface.. 12
Figure 16: First Generation GUI... 13
Figure 17: SITEX00 Experiment .. 13
Figure 18: GRASS GUI .. 15
Figure 19: GeoTV at BAE SYSTEMS ... 16
Figure 20: GeoTV at Spesuti Island.. 16
Figure 21:Terrain-Driven Placement Scenario ... 17
Figure 22: Redundant Perimeter Placement Scenario .. 19
Figure 23: Coverage Contour Generation... 19
Figure 24: IPAQ 3600 Running Linux ... 21
Figure 25: DSN Video Platform ... 22
Figure 26: DSNCOMM Block Diagram... 23
Figure 27: DSNCOMM Board.. 24
Figure 28: DSNCOMM Radio XMIT Spectrum .. 24
Figure 29: SITEX00 Experiment .. 26
Figure 30: SITEX01 Experiment .. 27
Figure 31: SITEX02 Experiment .. 28
Figure 32: SITEX02 Video Frames .. 29

 iii

LIST OF TABLES

Table 1: Addressing Representation Schemes.. 6
Table 2: Vic CODEC Frame Rate Analysis ... 23
Table 3: DSNCOMM Communication States .. 25
Table 4: DSNCOMM Energy Estimates.. 25

 iv

1 INTRODUCTION

The Dynamic Sensor Networks project investigated software tools and techniques for
unattended ground sensor systems. The DARPA SensIT program introduced a sensor network
concept for military and civilian uses that had nodes consisting of an embedded processor, digital
radio, and a number of sensors. The nodes form ad-hoc distributed processing networks
producing high-quality information with limited resource consumption. Sensor networks support
quick decision-making and provide timely and accurate situation awareness for soldiers in the
field (via a PDA-like device) and remote operators in a command center. An artist system
concept is shown in Figure 1. This research was intended to advance this system concept.

Figure 1: DSN Systems Concept

The DSN project organized a multidisciplinary research team. The USC Information
Sciences Institute and Distant Focus Inc. researched platform technologies, communications
subsystems, embedded operating systems, and handheld display systems. Virginia Tech
concentrated on declarative languages and execution environments, including status visualization
and planning tools. UCLA developed distribution and aggregation technologies such as network
protocols and network simulation tools. The DSN project was divided into three tasks:

 Task 1: Distribution and Aggregation includes node localization techniques, low-power
data link protocols, power aware routing protocols, and spatial addressing and routing.

 Task 2: Declarative Languages and Execution Environment includes topographical
soldier interfaces and a sensor network simulation environment for algorithm
development, deployment planning, and operational support.

 Task 3: Platforms includes investigative hardware development to support laboratory
communications, processing, or localization experiments as well as open-source COTS
PDA integration and system software in support of the solider interface.

 1

For the purpose of providing focus for this research, the DSN team defined three concept
operation (CONOP) scenarios. The first CONOP is intelligence gathering; small-scale
collaboration where sensor nodes form small ad hoc groups to identify and track targets to
provide human-in-the-loop fire support. The second is called collaborative consensus. This is
intended to provide reliable data from a large number of unreliable nodes such as from chem/bio
sensors. The third CONOP is health, status, plus augmented awareness. This scenario introduces
the idea of friendly forces traveling through a sensor net gaining tactical support from local
sensor nodes. Combined, these three scenarios defined distinct modes of operation of a sensor
network and operational requirements that drive the architecture definition. The SensIT program
sponsored a series of field experiments to stimulate the development of collaborative
technologies and facilitate validation of the multiple approaches.

The following sections are organized by task. Section 2 details the efforts related to Task
1: Distribution and Aggregation, Section 3 covers Task 2: Declarative Languages and Execution
Environments, and Section 4 discusses Task 3: Platforms. Section 5 covers Field Experiments.
Section 6 covers a summary of all deliverables. Section 7 presents the personnel and their
contributions to this effort. Section is a list of Publications resulting from this effort. Section 9 is
a list of Acronyms and finally, Section 10 is a list of Addenda.

 2

2 DISTRIBUTION AND AGGREGATION

Important characteristics of wireless sensor networks are how they communicate and
collaborate to understand the environment. The physically distributed sensor nodes leverage
spatial diversity to improve target classification and triangulate/track targets within a sensor
field. Management of their aggregate behavior defines sensor field lifetime, capabilities, and
performance. The DSN project investigated a number of topics related to the distribution and
aggregation research area. The primary focus was related to the development of a modeling and
simulation framework called SensorSim, which is described in Section 2.1. The simulation tools
were used to develop and characterize media access control (MAC) and wireless network
routing protocols developed by the DSN team. These efforts are described in Section 2.2.
Finally, localization of nodes is important in these distributed collaborative systems. Techniques
for GPS-less localization are detailed in Section 2.3.

2.1 Modeling and Simulation

2.1.1 SensorSim
UCLA developed a framework for detailed modeling and simulation of distributed sensor

networks called SensorSim. This tool is an extended version of ns, an open-source network
protocol simulator. The basic approach was to introduce to ns the notion of a set of node
resources (processor, sensor, radio etc.) that are used for various tasks in the protocol stack and
the application agents. Resources have a number of modes with different levels of power
consumption. For example, the radio model has transmit, receive, idle, and sleep modes, and
takes into account effects of data rate and radio frequency (RF) power amplification on the
overall power consumption. These models are used to compare and evaluate design tradeoffs for
various aspects of the distributed system, such as media access control (MAC), network routing,
distributed data management, and application-level interactions. SensorSim introduced a number
of features unique to network simulators:

The framework adds hybrid simulation capabilities to ns. The simulated network can consist
of a mix of virtual (simulated) nodes and real (physical) nodes. In other words, some of the
nodes in the simulated network have real nodes performing the work. This is particularly
useful in evaluating MAC protocols. The approach is based on using a PC with a node as a
gateway to a network of real nodes, each of which is represented by a proxy node in the
simulated network. The simulated network generates stimulus traffic for the smaller “real”
sensor network.

•

•

•

Another form of hybrid simulation capability was added to ns whereby an application written
as a Unix process can “run” on top of a simulated node. Essentially, the application interfaces
to the routing layer of the simulated node via an API that allows packets to be sent and
received. This capability has been leveraged at UCLA to simulate mobile scripts developed
under the SensIT Sensorware project, which was led by Rockwell Science Center.

The battery simulation models that go beyond the naive "fixed bucket of energy.” For
example, the battery model takes into account the rate at which the power is being consumed.
Additional models were developed that take into account the pulse discharge profile
generated by the protocols.

 3

Targets are modeled in the simulation framework as target node entities. They interact with
sensor node entities over sensor channels that can be modeled with physical layer models or
logical sensor layer (probability detection event) models.

•

The SensorSim architecture is shown in Figure 2. The user node runs a user application that
interacts with the network simulation over wireless channels. A number of real and simulated
sensor nodes execute the distributed sensor processing application(s) and interact with other
nodes over the wireless channel(s) and targets over the sensor channel(s). The functional model
of the node simulates the hardware and measures performance. The power model of the node
logs power consumption of the various simulated components. Finally, target nodes simulate the
behavior of targets of interest and generate stimulation datasets for the nodes. Alternatively, real
data can be used from data collection experiments.

Figure 2: SensorSim Architecture

The SensorSim tool is available on the UCLA web site: http://nesl.ee.ucla.edu/sensorsim/.
It has been used extensively in this project to evaluate sensor networking protocols and
collaborative application environments and has been adopted by a number of the SensIT
community researchers. Many of the features and models have been incorporated into the ns2
sensor network simulation tool environment and are now made available to a broad network
research community. The SensorSim tool was also used to evaluate data collections at the various
SensIT field experiments.

2.1.2 SensorVis
In addition to SensorSim, the UCLA team developed a scenario generation and visualization tool
called SensorVis. This tool supports diverse scenario generation, including node deployment
patterns, target trajectories, sensor characteristics, and node attributes. The tool can be slaved to a

 4

http://nesl.ee.ucla.edu/sensorsim/

running SensorSim simulation to configure the experiment and visualize the results overlaid on
publicly available maps. It can also be used interactively to monitor and track the activities in a
real sensor network. SensorVis can generate XML output for further analysis of the behavior of
the sensor network and has been used to read in SITEX experiment scenarios. A simulated
sensor network scenario of the UCLA campus is shown in Figure 3. SensorVis also introduced
other planning capabilities to the DSN sensor tool suite. Several coverage analysis algorithms
were integrated with the scenario builder. This allows the sensor network designer to create
topologies with desired coverage performance.

Figure 3: SensorVis UCLA Campus Scenario

2.2 Communications and Networking Protocols

2.2.1 Spatial Addressing
Since wireless spectrum is a broadcast medium, each wireless interface requires a media

access control identifier (MAC address). However, the typical data payload size in wireless
sensor networks is very small. A globally unique MAC address appended to every packet would
present too much protocol overhead for very small packets. DSN addresses this problem by
using a smaller address size and employing spatial address reuse, similar to those used in cellular
systems. Figure 4 shows an example of spatial address reuse. There are two aspects of this
problem: dynamic assignment algorithms, and address representation.

 5

40

1

1 2

2

3

5

Figure 4: Spatial Address Reuse Example

The dynamic assignment algorithm developed under this effort operates as shown in
Figure 5: 1) the network is operational (nodes have a valid address), 2) the nodes listen to
periodic broadcasts of neighboring nodes, 3) in case of an address conflict, the node is notified,
and 4) a non-conflicting address is chosen and broadcast in a periodic cycle. At this point, the
new node has joined the network. This algorithm has a number of beneficial features. It
supports additive convergence in that the network remains operational during address selection
and mapping from a unique id to a spatially reusable address. The algorithm is also valid with
unidirectional links.

0

0
1

2

0
1

0
1

0

0
1

2 41 3

3

2

Figure 5: Distributed Assignment Algorithm

Address representation is a problem in sensor networks because the number of unique
addresses varies with the node density. The UCLA approach is to use variable-length encoded
MAC addresses so that the protocol dynamically picks addresses according to local node density.
This approach was initially implemented and evaluated using the PARSEC simulator, then was
incorporated into SensorSim. Extensive simulation and analysis has shown that the MAC header
overhead is reduced by a factor of three (3X) relative to fixed addresses and by an order of
magnitude (10X) relative to Ethernet-type 48-bit addresses (see Table 1). The scheme is
perfectly scalable from a few to millions of nodes at practical node densities; it handles
unidirectional links, and is robust to node destruction, introduction, and mobility. The scheme
can be used for both TDMA-type MAC as well as CSMA-type MAC. Figure 6 shows a plot of
average node density compared to average encoded address size in bits.

Table 1: Addressing Representation Schemes

Scheme Address Selection Type Address Size (bits) Address Scalability

Globally Unique Manufacturing 128 +

Network Wide Unique Deployment 14 -

Fixed-size Dynamic Centralized / Distributed 4.7 +/-

Encoded Dynamic Distributed 4.4 +

 6

X(m)

Nodes/m2

Y (m)
X(m)

Average address size (bits)

Y (m)

 Figure 6: Node Density Versus Average Address Size

2.2.2 Low-Power Network Routing
UCLA investigated a number of low-power network routing protocol approaches that are

described extensively in the publications included in Section 10. One such approach is called
Adaptive Transmission-power Heuristic and Energy-optimizing ad-hoc Network routing
Algorithm (ATHENA), which uses alternate routes to maximize network lifetime and
dynamically adapts transmission power to find energy-optimal multi-hop paths. The alternate
routes approach exploits the diversity of paths to distribute traffic so as to avoid burnouts along a
single heavily trafficked path. Packet dispersers and combiners are used for this purpose, and
several deterministic as well as stochastic algorithms for doing this were investigated via
simulation in ns. The path diversity approach is applicable to routing approaches such as DSR, as
well as gradient based routing. UCLA also conducted studies of what metrics are meaningful in
evaluating the schemes, and proposed the use of histogram of remaining battery energy as an
appropriate metric, with the RMS of the histogram capturing the two essential properties: area
and spread. The Data Combining entities, which are created automatically at intermediate nodes,
combine data packets that are headed in the same destination. It essentially lowers the area of the
histogram. Simulations show a significant energy-latency trade-off is enabled by this technique
relative to gradient or DSR routing. A second approach is deliberate spreading of the traffic, for
which several schemes were investigated including energy-based, stochastic, stream-based, and
combinations. Spreading reduces the RMS metric by reducing the spread in the histogram.
Simulation results show that the stream-based scheme works best. However, spreading is not
beneficial under all circumstances, and ideally it is better when averaged over all possible future
traffic patterns. This requires detection of bottleneck nodes in the network.

2.3 GPS-less Localization
The discovery of absolute and relative locations of individual nodes is very important in a

sensor network. The location attribute is often used in location-based naming and geographic-
addressing of nodes. Location is used in geographical routing protocols. Location is also used

 7

for tracking of moving phenomena (vehicles, personnel, etc.). The Global Positioning System
(GPS) is used for this purpose in many networking systems, but it is not sufficient. GPS requires
line of sight to multiple satellites, which can be hampered by trees or buildings. It also
introduces cost to a sensor system and consumes power. Surrogate GPS systems have been used
in military systems, but they are also susceptible to failure and add cost. The UCLA team
examined approaches for deriving location if only a subset of nodes were aware of their location
as shown in Figure 7.

Known Location
Unknown Location

Figure 7: Sensor Network with Known and Unknown Locations

UCLA investigated a number of multilateration algorithms for GPS-less sensor node
localization, including basic centralized multilateration, iterative multilateration, and finally
collaborative multilateration. The algorithm for basic multilateration is given in Figure 8.

Figure 8: Basic Multilateration

In this centralized approach, the nodes route messages to a central point where the equations are
solved simultaneously. This has a number of disadvantages. Timing synchronization is required
and high traffic congestion around the central node leads to higher message power consumption
and higher latencies for location updates. Distributed approaches are preferable. They require
less traffic and therefore less power. They have better handling of environmental variations
(speed of ultrasound, radio path lost), and are more robust to node failure.

Iterative multilateration, for example, is basic multilateration applied iteratively across
the network. The location estimate is improved with each iteration step of the algorithm until
locations settle to a steady state. This approach is diagramed in Figure 9.

 8

Figure 9: Iterative Multilateration

The percentage of nodes able to resolve their locations is given in Figure 10. For moderate
numbers of nodes, iterative multilateration works well for percentages over 20%. However,
iterative multilateration may stall if the network is very sparse or the percentage of beacons is
very low. Terrain obstacles can also have a significant impact on location accuracy. One
problem with iterative multilateration is that if the network is large, successive errors will
accumulate and degrade location estimates.

Figure 10: Resolved Nodes Versus Beacon Densities

This fact motivated the development of collaborative multilateration. Collaborative
multilateration is described in Figure 11. It uses location information over multiple hops, but
weights the error estimate of the indirect paths. Solving the equations operates the same as basic
multilateration.

 9

Figure 11: Collaborative Multilateration

A complementary approach uses collaborative sub-trees. With this approach, location estimation
takes place at the scope of a neighborhood. Each unknown node (shown in Figure 12) must have
at least three participating neighbors and a participating node is either a beacon node or an
unknown node connected to three participating nodes. The collaborative sub-trees can zoom in
and out to form a well-determined system. It can avoid degenerate cases and obstacles. It also
reduces the error propagation. Error in the location estimates can further be reduced if
computation takes place at a central point. This is less of a burden when the size of the
neighborhood is bounded.

Figure 12: Collaborative Sub-Trees

Extensive simulation analysis and field-testing of these concepts was performed under
this research effort. In simulation for example, the accuracy of iterative multilateration is shown
in Figure 13. This analysis was performed using the SensorSim tool suite. For indoor and
outdoor physical tests, two platforms were used: 1) a custom ultrasound array microsensor
developed at UCLA called Medusa, and 2) commercial Rockwell HYDRA microsensors using
RSSI estimates. UCLA conducted extensive RSSI measurements at various locales on UCLA
campus and in places near the campus to validate the iterative multilateration based joint location
and channel estimation scheme. Analysis of results indicates good localization in open areas
similar to those used for SITEX experiment, but problems with multipath in the presence of
nearby structures. Joint RSSI - ultrasound schemes were considered where ultrasound provides

 10

additional distance measurement via ranging, while the radio not only provides RSSI data but
also serves to synchronize the ultrasound ranging. The range accuracy characterization of these
platforms is summarized in Figure 14. Further information and analysis of multilateration
algorithms is provided in the academic papers included in the addendum of this report.

Figure 13: Iterative Multilateration Accuracy

Figure 14: Ultrasound and RSSI Platform Characterizations

 11

3 DECLARATIVE LANGUAGES AND EXECUTION ENVIRONMENT

3.1 Graphical Soldier Interfaces
Figure 15 provides an artists conception of a soldier graphical sensor network interface

that supports simple tasking, status display, maintenance, and situation assessment functions. A
number of technologies were converging that made a graphics-rich interfaces feasible without
bulky computers. First, personal digital assistant devices were becoming widely available in the
commercial marketplace and they have advanced to the point of having color displays, high
performance 32-bit embedded processors, and megabytes of memory. Second, complete
graphical libraries were migrating to these platforms, including Java and X-Windows. The PDA
platforms are described further in Section 4. This convergence of technologies enabled the DSN
team to explore mechanisms for having soldiers interact with the sensor network.

Figure 15: Artist Conception of Graphical User Interface

The DSN team collaborated with the BBN system integrator contractor to provide a
graphical front-end which interfaced to query and tasking libraries being developed within the
SensIT community. The distributed database query system being developed at the University of
Maryland was the primary integration target in support of the SITEX SensIT program field
experiments. The graphical interface was also was intended to support the SensorSim simulation
tool to control and visualize simulated sensor fields. Other tools were incorporated as needed,
such as the UCLA coverage server and Virginia Tech placement server.

3.1.1 First Generation Graphical User Interface
The first generation of the user interface, shown in Figure 16, was implemented in Java2

for a Linux or Windows laptop. Migration to Personal Java under Windows CE was an eventual
target for this implementation. Personal Java is a subset of Java2, however, the subset excluded
many of the most useful graphics libraries from the implementation. In the end, this made
Personal Java not feasible as a target. Nevertheless, full Java implementations were promised for
the IPAQ PDA either under WinCE or Linux. The graphical user interface was an extensible
object-oriented Java architecture that supported a number of display and query mechanisms. For
query, the user could highlight a region using a mouse or pen on the touch screen and tap for a
pop-up menu of stored queries. This was the primary query mechanism. Queries could also be
manually entered in a text-based dialog. The display system supported pan and zooming
mechanisms and overlaid sensor field status information over a topographical vector map or
registered satellite image. The tool can visualize sensor detection and target track events in real

 12

time. For maintenance, the tool can display sensor node GPS-reported locations, id, battery
status, and sensor configuration.

Figure 16: First Generation GUI

Figure 17: SITEX00 Experiment

This first generation GUI was used in support of the BBN-led SensIT SITEX00
experiment at 29 Palms, CA in August 2000. The GUI was integrated with the sensor field
coverage algorithms and software developed by UCLA. At 29 Palms, the GUI communicated
with the sensor field to acquire sensor node positions; these positions were fed to the sensor field
coverage algorithms to provide calculation and visualization of sensor field coverage. Sensor
nodes were moved to demonstrate that the software could respond to changes in the sensor field.
As a second part of the experiment, the GUI was operated in conjunction with a digital compass,
GPS, and head-mounted display, allowing the user to navigate the sensor field. The map rotated
to maintain proper orientation for the operator. This combination of the sensor field coverage
algorithms and the user interface allowed the operator to accurately place sensor nodes to their
best effect. In this mode, a user specifies an area to be monitored by sensors. This monitored
area is analyzed using sensor deployment algorithms developed at Virginia Tech and a sensor
deployment plan is created. The user is shown in the GUI how to place the sensors according to
the deployment plan. Guiding the user through sensor placement requires knowing where the
user is physically located, where the user is headed, and where the user is looking. The small
box containing a GPS unit, a digital compass, and other user-related sensors provided the user
with this feedback. Using this interactive GLASTRON heads-up display, the researchers were
able to navigate, view, and measure the SITEX00 sensor field. This version of the software ran
on a laptop in a backpack. A GPS antenna was mounted on the backpack strap at the shoulder,
and a digital compass was located on the helmet. A photo from the SITEX00 field experiment is
given in Figure 17. This first generation GUI was used in the subsequent field exercises, but did
not achieve the goal of running on a PDA.

 13

Unfortunately, a robust Java distribution never materialized for PDAs and the
performance of interpreted Java distributions never performed well enough to support the load of
a graphical user interface. It had been hoped that the GUI would easily port to the iPAQ, but it
did not. Java programs are intended to be portable, but they are only portable to platforms for
which a Java virtual machine (Java VM) exists. The team experimented with the Kaffe
(kaffe.org), a clean-room Java VM implementation, but it was not mature enough to support all
Java features used by the GUI. There was a large effort at Compaq to port officially licensed
Java VM, but an unfortunate clause in Sun's license agreement prevented the team from
experimenting with these ports. The clause prohibits redistribution until a port passes 100% of a
provided test suite. At the time, it passed all but a handful of these tests but was unavailable.
Even when a Java VM did become available for the iPAQ, none of the initial versions had a
sophisticated “just-in-time” JIT compiler so there were considerable performance problems. The
DSN GUI ran so slowly it was unusable. It was not clear that the Java VM performance
problems would be fixed soon, so an alternative approach was investigated.

3.1.2 Second Generation Graphical User Interface
The second generation DSN GUI was motivated by a desire to demonstrate a sensor

network interface running on a handheld computer. It was also motivated by a desire to improve
the map-handling capabilities of the GUI itself, allowing more types of data to be displayed and
having a more structured interface with the sensor network. This was achieved by integrating the
GUI with an open-source geographical information system called GRASS and an open-source
SQL database server called PostgreSQL. When examining the requirements of the GUI, such as
raster and vector import, display, map registration, and geographical browsing, it was realized
that many of these features are standard in geographic information systems (GIS). In order to
avoid duplicate work, it was decided to explore the possibility of adapting an existing GIS
system to implement the GUI. GRASS (Geographic Resources Analysis Support System) is an
open source, free software GIS system originally developed in the early 1980s by the U.S. Army
Corps of Engineers' Construction Engineering Research Laboratory (USA/CERL). GRASS
continues to be actively maintained today by a group of users/developers without involvement
from USA/CERL. GRASS is available for Linux and uses the X Window System, although it
had never been used on an iPAQ before the DSN team attempted to do so. Getting GRASS to
work on the iPAQ was a relatively straightforward recompile for the ARM processor. It worked
without modification. This is strong confirmation of the decision to use Linux on the iPAQ to
improve portability.

GRASS provided the ability to import a tremendous amount of existing GIS data into the
DSN GUI. GRASS supports a myriad of common, (and many not-so-common), GIS data formats
so that it is a simple matter to import raster and vector layers from sources such as the USGS.
For example, for SITEX00, the team had access to digital orthophoto quadrangle (aerial
photography), man-made features, roads, vegetation, non-vegetative features, water, and
topography. The second generation GUI operates by using native GRASS commands to display
one or more of these static data layers. The GUI also uses the GRASS library functionality to
draw dynamic sensor network data on top of the static layers. Dynamic data includes icons for
sensor nodes and users and sensor network detection results. This second version of the GUI
used a PostgreSQL database as the data interface from the sensor network to the GUI. This
provided a standard, well-documented interface layer, which simplified the task of integrating
sensor network and GUI software developed independently. The PostgreSQL database also

 14

provided the GUI with a persistent record of all sensor network events for later replay. The
PostgreSQL interface did not provide a mechanism for tasking the sensor network from the GUI.

This second generation interface was used at SITEX02 at 29 Palms in November 2001. It
supported pan and zoom functionality of the original Java GUI and the ability to enable or
disable various registered static and dynamic data layers. Using the extensive scripting language
and graphical data manipulation utilities available in GRASS, the GUI also supported 3D
perspective projections. A collection of screen shots is given in Figure 18. Although the system
proved to be extremely flexible, it was also somewhat cumbersome. GRASS is intended for map
manipulation and geographic data overlay for a wide variety of disciplines, such as geography,
geology, oceanography, and climatology. It’s support for dynamic data streams was extremely
limited and the refresh rate of the map was one frame per second at best.

Figure 18: GRASS GUI

3.1.3 Third Generation Graphical User Interface
The third and final generation of the GUI, called GeoTV, builds on the capabilities of the

previous generations while adding increased temporal browsing capabilities, better graphics
support, and more general applicability. The fundamental motivation behind GeoTV is the
recognition that many aspects of the sensor network visualization problem are dynamic in nature
because of changes in network configurations, target activity and user queries. These dynamic
qualities lend a temporal aspect for much of the data produced and consumed by the GUI.
However, many GIS and RDBMS systems lack good support for dealing with temporal data.
GeoTV provides the ability to browse geographic data, (as in a typical GIS system), but it also

 15

allows the user to browse temporally. This "geo-temporal visualization" provides the user with a
birds-eye map and a timeline. Each of these elements provides an overview of available global
information in both space and time. The user indicates a region of interest on the map and a
region of interest on the timeline. GeoTV responds by rendering a detailed view of the desired
regions in the main panel.

The simple selection of regions on the map and timeline provide a powerful means for
the user to graphically specify complex queries. For example, questions such as "Where have
vehicles passed near this building in the past hour?" or "How many people have been detected in
a given room over the past day?" can easily be answered with a few taps of a stylus on the map
and timeline. Once GeoTV displays a focused region, the user can pan or zoom spatially and can
also browse through time using VCR-like controls. When new data is actively being retrieved
from a sensor network, this allow the user to request real-time visualization tasks such as
"Display all currently detected vehicles including their tracks for the last 2 minutes."

Figure 19: GeoTV at BAE SYSTEMS

Figure 20: GeoTV at Spesuti Island

GeoTV has sophisticated rendering support. It can render SVG content for vector data
layers as well as icons. All vector rendering is antialiased, which gives increased effective pixel
resolution. This is important with displays such as that on the iPAQ that have many fewer pixels
than a typical desktop display. GeoTV graphics can also include translucence, which has been
used to good effect to indicate temporal separation of spatially coherent events. The graphics
libraries developed for GeoTV are generally useful and are available to the open-source from
http://www.xsvg.org. Unlike previous versions, GeoTV does not depend on the large external
software packages required such as GRASS and PostgreSQL. GeoTV includes built-in scalable

 16

http://www.xsvg.org/

graphics support. GRASS is used as an offline manner for importing GIS data since GeoTV
accepts only a limited number of vector data formats (DXF and SVG) while GRASS can convert
to DXF from many different formats. In the place of PostgreSQL interface, GeoTV interfaced
directly to the COUGAR query interface system developed by Cornell University
(http://cougar.cs.cornell.edu/). A preliminary version of GeoTV was demonstrated at the
November 2002 PI meeting in Boston with data received over the Internet from BAE Systems in
Austin, TX (shown in Figure 19). After the DSN project, GeoTV was used to display results
from a DARPA PAC/C program experiment at Spesuti Island, Aberdeen Proving Ground, in
Maryland. This display is shown in Figure 20. GeoTV continues to be actively developed and is
available from http://www.geotv.org.

3.2 Sensor Placement Tool
Virginia Tech developed a sensor node placement optimization tool the addressed the

problem of how to place and deploy sensors for a given set of application requirements in a
specified geographic region. The application requirements include a number of diverse factors,
such as target type, sensor type, terrain effects, errors in deployment, and coverage and
redundancy goals. In terms of sensor types, sensors vary in range, accuracy, power, and
detection probability for different kinds of targets. Targets under consideration range from
personnel to vehicles. Likely target behavior can also be a factor (speed range, weight,
loudness). Initial work on the coverage server was performed using the NS-2 sensor network
simulator. An algorithm has been created that “seeds” the nodes onto the map; this seeding
process is iterative, includes a random component, and is biased by the features on the map.

Figure 21:Terrain-Driven Placement Scenario

 17

http://cougar.cs.cornell.edu/
http://www.geotv.org/

The placement tool was evaluated in a variety of scenarios.

Figure 21 shows the visualization interface of the sensor placement tool for one such
scenario. In this scenario, the placement engine was instructed to favor roads and avoid rivers.
The performance on the tool was measured on several metrics, including the quality of coverage,
the tolerance to faults of the system, and the connectivity of the resulting wireless network.
Note that the tool does not directly optimize these metrics, but they are related to the optimizing
function. In addition, the run time is linear in terms of the number of nodes and the number of
geographic features. The tool takes Spatial Data Transfer Standard (SDTS) maps as input.
Figure 22 shows an alternative scenario for redundant perimeter protection and Figure 23 shows
a contour coverage computation view. Further details of the coverage server tool are provided in
the addendum.

 18

Figure 22: Redundant Perimeter Placement Scenario

Figure 23: Coverage Contour Generation

 19

4 PLATFORMS

The platform task in the DSN project investigated hardware prototypes and system
software infrastructure for mobile soldier interfaces and prototype microsensors. The primary
focus of this task centered on Linux development for embedded processor systems using the
Compaq IPAQ™ personal digital assistant. This work is described in Section 4.1. The other
major task included a communications of a GPS-synchronized radio, which is described in
Section 4.2. The report concludes with a summary of DSN field experiments in Section 5.

4.1 Embedded Linux on IPAQ™
The Compaq IPAQ™ 3600 shown in Figure 24 is a commercial personal digital assistant

(PDA) built on the StrongARM 32-bit embedded processor. This model has 32MB of SDRAM,
32MB of Flash, and a 320x200 color display. The IPAQ also has a connector on the back for a
variety of expansion sleeves, such as Compact Flash and PC Card (PCMCIA). This PDA was
unique at the time in that it supported the open-source Linux operating system. The DSN team
realized that this would be an ideal prototyping platform for the soldier user interface. It has a
processor with enough capability to run operating systems originally designed for larger desktop
computers. The color display is important for communicating more information in fewer pixels.
The reflective display makes outdoor viewing quite easy, even in direct sunlight, unlike
traditional laptop displays that lose contrast in sunlight. Perhaps most importantly, the IPAQ is
unique among handheld computers in that it provides a broad expansion connector, making much
of the processor system bus available. This is very appealing as it could be used to develop a
custom sleeves tailored for sensor network applications.

 20

Figure 24: IPAQ 3600 Running Linux

4.1.1 DSN Linux Contributions
The open-source Familiar distribution at www.handhelds.org is maintained in part by researchers
at Compaq Cambridge Research Laboratory. The DSN team added a number of tools to this
distribution to make it robust for sensor network applications, including:

• ISI created a package management system called IPKG. This system is similar to Debian
DPKG or RedHat RPMs, but tailored to handheld systems with no hard disk, just a flash
file system. IPKG became the standard package management system for embedded Linux
computers using the Familiar distribution and is used by a number of commercial
embedded systems (http://www.handhelds.org/z/wiki/iPKG).

• ISI developed a full-screen pen-based stroke recognizer (XStroke) for text and command
entry directly on the IPAQ display. It was developed for the GeoTV map display
interface to input single-letter commands. This is now the default character input
mechanism for the IPAQ Familiar Linux distribution (www.xstroke.org).

• ISI has contributed code to support trapezoid drawing in the Xfree86 Render Extension,
later adapted into Cairo Vector Graphics Library (www.cairographics.org). For DSN,
this work enabled anti-aliased display of translucent objects on the GeoTV GUI. For the
wider open-source community, this contribution is beginning to have a significant impact
on X-Window systems for most desktops by adding translucency to X applications,
window managers, etc.

 21

http://www.handhelds.org/
http://www.handhelds.org/z/wiki/iPKG
http://www.xstroke.org/
http://www.cairographics.org/

• ISI developed a Scalable Vector Graphics Library (XSVG) for rendering SVG vector
images. For the GeoTV GUI, this library is used for vector data (roads, rivers, buildings,
floorplans, etc.) and dynamic data such as detection and track events. This library is
available at www.xsvg.org and is being actively used by application environments such
as GNOME and KDE.

4.1.2 Video Surveillance using IPAQ
One of the applications of investigation under the DSN project was video surveillance

and conferencing using portable handheld devices. The development platform consisted of a
Compaq IPAQ 3600, a dual PC card sleeve, a Cabletron 802.11b PC card, and a Videum PC
Card camera. The camera supported 320x200 color images at up to 15 frames per second. A
photo of the platform is shown in Figure 25 (left). A power consumption breakdown is given in
Figure 25 (right). Transmitting 15 frames per second, the entire system consumed less than 1.2
Watts including the processor (172mW), camera (533mW), and wireless card (357mW). This
entirely COTS prototype compared well with research microsensor platforms used solely for
acoustic data processing and indicated that video is quite possible with the state of the art.

Figure 25: DSN Video Platform

The software infrastructure used for video surveillance experiments was based on open-
source video conferencing software package called vic. This software was ported from desktop
Linux to the IPAQ. A number of optimizations were introduced to make this port feasible.
Since Linux usually runs on desktop processors with IEEE floating point, many of the video
coder/decoders (CODECS) did not perform well without floating point on the IPAQ. Table 2
gives the achievable frame rates using an IPAQ for different scenes. The best CODEC, nv, was
selected for the SensIT field experiments.

 22

http://www.xsvg.org/

Table 2: Vic CODEC Frame Rate Analysis

4.2 GPS-Synchronized Communications
ISI constructed an experimental platform to evaluate the idea of using GPS to

synchronize radios in a sensor network. Some GPS units provide a 50ns-accurate clock
reference and the concept was to use this timing pulse to enable fine-grained TDMA
communications. The DSNCOMM board block diagram is given in Figure 26.

GPS
Antenna

Comm
Antenna

Clock
Oscillator

TOD
(Time Of Day)

Microcontroller

Data
Timing

Variable Ratio
Divider

CLK IN

TOD to Sensor
Subsystem

Data
Buffer

Sleep
Mode

GPS Radio

1 pulse per second

Serial Por t
Controller

To
PDA

External Devices
(i.e.. Long-range radio)

To
Sensor

Subsystem

GPS
Antenna

Comm
Antenna

Clock
Oscillator

TOD
(Time Of Day)

Microcontroller

Data
Timing

Variable Ratio
Divider

CLK IN

TOD to Sensor
Subsystem

Data
Buffer

Sleep
Mode

GPS Radio

1 pulse per second

Serial Por t
Controller

To
PDA

External Devices
(i.e.. Long-range radio)

To
Sensor

Subsystem

Figure 26: DSNCOMM Block Diagram

A photo of the DSNCOMM board for GPS-synchronized communications is given in
Figure 27. The board uses a commercial Motorola Oncore UT GPS daughter board that can
provide the 50-ns accurate 1 pulse-per-second clock reference. A firmware update of the GPS
chipset allows 100 pulses-per-second, which enables finer granularity TDMA slots. The radio is
a 100 kbps 900 MHz band RFMD 9901/9902 FSK radio. Five DSNCOMM boards were
fabricated under the DSN project. Figure 28 is a screen capture of the node transmitter output
spectrum, which is generating a 60 kHz square wave through the radio.

 23

Figure 27: DSNCOMM Board

Figure 28: DSNCOMM Radio XMIT Spectrum

The concept of operations is to allow the sensor nodes to remain off for extended periods
of time and support very narrow time windows where communications exchanges occur. GPS is
the only mechanism that doesn’t drift because of thermal or other environmental conditions, so
time synchronization is possible to a very fine degree. The operational states of the radio are
given in Table 3. The energy measurements for the various states are provided in Table 4. The
total energy consumed per packet is 37.2165 Joules. For a packet size of 10,000 bits (100ms @
100kbps), the energy per bit is 3.7E-3 joules/bit.

 24

Table 3: DSNCOMM Communication States

SYNC GPS does cold start; acquire satellite almanac, ephemeris, and time of
day; GPS turned off.

SLEEP Set the timer for 30 seconds before scheduled transmit time, then sleep
the processor.

WAKE When timer trips, power up the processor and then turn on the GPS.

SETTLE Five milliseconds before transmission turn on the transmitter and allow
the PLL to settle.

TRANSMIT At the 1 PPS edge, transmit for 100 milliseconds at 100 kbps. Total data
transfer is 10000 bits.

SLEEP Turn off the transmitter and sleep the processor.

Table 4: DSNCOMM Energy Estimates

Item Duration Voltage Current Watts Joules
Initialization (done once per day or less)
GPS Cold Start 300 sec 5V 180 mA .9 W 270
Operation (per packet)
Processor sleep (with
timer running)

4 hours 5V 100e-6 A 0.5 mW 7.2

Processor on and GPS
reacquire

30 sec 5V 200 mA 1 W 30

TX Settle 10 ms 5V 30 mA 0.15 W 0.0015
TX Data 100 ms 5V 30 mA 0.15 W 0.0150
Total Joules per packet 37.2165

 25

5 FIELD EXPERIMENT SUMMARY

DSN participated in all three SensIT field experiments and other demonstrations

5.1 SITEX00, 29 Palms, August 2000
The DSN team participated in SITEX00 in August 2000 at Twenty-Nine Palms, CA. A

prototype user platform was fielded using a laptop, heads-up display, GPS, and digital compass.
The first generation GUI (see Section 3.1.1) was used to navigate the sensor field and visualize
changes to the maximal breach path in real time.

Figure 29: SITEX00 Experiment

 26

5.2 SITEX01, 29 Palms, March 2001
At SITEX01 in March 2001, the DSN team collaborated with the Rockwell-led

SenosrWare project. The experiment consisted of ten Rockwell HYDRA platforms with
geophones and one laptop with a webcam video camera. The HYDRA nodes performed a wave
intensity comparison algorithm (WIC) to generate bearings to the target. The results were
displayed on the first generation GUI. The experiment also included a video surveillance
demonstration. The laptop generated the camera data, but the results were displayed on a IPAQ
for the first time. The DSN team also supported the main BBN/Sensoria experiment using the
first generation GUI. A summary of the experiment is shown in Figure 30.

Figure 30: SITEX01 Experiment

 27

5.3 SITEX02, 29 Palms, November 2001
At SITEX02 in November 2001, the DSN team fielded three prototype IPAQ platforms

and collected video data for tracked and wheeled vehicles. Live GPS from DSN-instrumented
vehicles was displayed on the second generation GUI. DSN also supported the main BBN-led
experiment with Sensoria 2.0 nodes using the first generation Java GUI. A number of secondary
experiments for coverage algorithms were also performed. A summary of the experiment is
provided in Figure 31 and example video is shown in Figure 32.

Figure 31: SITEX02 Experiment

 28

Figure 32: SITEX02 Video Frames

 29

6 DELIVERABLES SUMMARY

6.1 Deliverables for FY99

6.1.1 Distribution and Aggregation
1) Initial Network Services API Specification (UCLA) [complete]

UCLA has defined a set of functions that make up this API specification for the DSN
platform and continues to analyze the underlying protocols using the ns simulation
tool.

6.1.2 Declarative Languages and Execution Environment
2) Topographical Map GUI Prototype Specification (VT) [complete]

Virginia Tech delivered a first release of the GUI that is able to process user inputs
and generates a format appropriate for U-Maryland query language.

3) Query Language Integration Specification (VT) [complete]
Virginia Tech has been working with the SenseIT community at the BBN telecons
and has specified an interface to generate user inputs for the U-Maryland query
language.

6.1.3 Platforms
4) DSN Research Platform Specification (USC/ISI) [complete]

USC/ISI has completed the design of the comm. subsystem board.

6.2 Deliverables for FY00

6.2.1 Distribution and Aggregation

1) NS Simulation Code Release and Documentation (UCLA) [complete].
UCLA has made the SensorSim simulator code available to other members of the
SensIT community. USC/ISI (Deborah Estrin’s group) is making SensorSim a formal
part of the ns release.

2) Spatial Addressing and Routing Simulation (UCLA) [complete].

UCLA is investigating addressing and routing protocols currently using the ns
simulator. This work is exercising the ns simulator development. The simulation
work is complete; an implementation using a test platform is also being done.

6.2.2 Declarative Languages and Execution Environment
3) Java Code Release and Documentation (VT) [complete].

Virginia Tech has delivered the GUI source code to BBN. VT demonstrated this
code at the SITEX00 experiment. Periodic updates continued for SITEX01 and
SITEX02 experiments.

 30

6.3 Deliverables for FY01

6.3.1 Distribution and Aggregation

4) PDA Experiment Code Release, Documentation, Report (UCLA)
[complete].
UCLA has completed an implementation of sensor data distribution protocols on a
network of iPAQ PDAs using 802.11b radios, and serial magnetometers. Another
implementation using prototype radios based on RFM transceivers was done.

6.3.2 Declarative Languages and Execution Environment
Integration Code Release, Documentation, Report (VT) [Complete].

Virginia Tech released new versions of the GUI to BBN’s specifications for use in the
SITEX02 experiment at Twentynine Palms as well as for the 2002 demonstration at
the PI meeting. This has been tested with the UMD gateway simulator and
integration with other pieces of the processing chain continues.

6.3.3 Platforms
5) Integrated Platform Selection Report (ISI) [Complete].

The SensIT community has specified the Sensoria 2.0 platform. The DSN team is
using this platform for experiments where appropriate and relying on IPAQ PDAs for
secondary experiments.

6) GPS Experiment Report (ISI) [Complete].

Results are included in the DSN final report.

6.4 Deliverables for FY02

6.4.1 Distribution and Aggregation
1) Integration Code Release, Documentation, and Report (UCLA) [Complete].

UCLA has released a snapshot of the mobile sensor script framework, operational on
iPaqs and Sensoria WINS nodes, via SourceForge.

6.4.2 Platforms
2) Integrated GPS experiment (ISI) [Complete].

The final integrated experiment was performed in conjunction with Cornell and BAE
SYSTEMS (Austin) in November 2002.

 31

7 PERSONNEL

7.1 USC Information Sciences Institute Personnel
•

•

•

•

•

•

•

•

Brian Schott Project Leader, PI

Robert Parker Director, ISI-E
Joe Czarnaski Researcher

Doe-Wan Kim Researcher

Bruce Parham Engineer

Ron Riley Researcher

Jack Wills Researcher

Carl Worth Researcher

7.2 UCLA Personnel
•

•

•

•

•

•

•

•

Mani Srivastava Associate Professor, Co-I

Athanassios Boulis PhD Student

Gautam Kulkarni PhD Student

Sung Park Graduate Student

Andreas Savvides PhD Student

Curt Schurgers PhD Student

Vlassis Tsiatsis PhD Student

Scott Zimbeck Graduate Student

7.3 Virginia Tech Personnel
•

•

•

•

•

•

•

•

•

•

Mark Jones Associate Professor, Co-I

Peter Athanas Assistant Professor, Co-I

Arya Abraham Graduate Research Assistant

Gary Friedman Undergraduate Research Assistant

Dennis Goetz Undergraduate Research Assistant

Anup Gupta Graduate Research Assistant

Christian Laughlin Undergraduate Research Assistant

Shashank Mehrotra Graduate Research Assistant

Jonathan Scott Undergraduate Research Assistant

Manu Sporny Undergraduate Research Assistant

 32

8 PUBLICATIONS

[1] “Dynamic Fine-grained Localization in Ad-hoc Networks of Sensors” by Andreas
Savvides, Chih-Chieh Han, and Mani Srivastava. UCLA Technical Report, and paper
submission to Mobicom 2001.

[2] “On modeling networks of wireless microsensors” by Andreas Savvides, Sung Park, and
Mani Srivastava. UCLA Technical Report, and paper submitted to Sigmetrics 2001.

[3] “Tasking Distributed Sensor Networks” Mark Jones, Shashank Mehrotra, and Jae Hong
Park to Journal of High Performance Computing. Accepted for publication.

[4] S. Park, A. Savvides, and M. Srivastava, "Simulating networks of wireless sensors,"
Proceedings of the 2001 Winter Simulation Conference (WSC 2001), December 2001.

[5] C. Schurgers, and M. Srivastava, "Energy efficient routing in wireless sensor networks,"
Proceedings of MILCOM 2001, October 2001.

[6] C. Schurgers, G. Kulkarni, and M. Srivastava, "Distributed assignment of encoded MAC
addresses in wireless sensor networks," Proceedings of the ACM Symposium on Mobile
Ad Hoc Networking & Computing (MobiHoc 2001), October 2001.

[7] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, "Energy-aware wireless
sensor networks", IEEE Signal Processing (special issue on collaborative signal
processing), March 2002.

[8] C. Schurgers, V. Tsiatsis, and M.B. Srivastava, "STEM: Topology management for
energy efficient sensor networks," IEEE Aerospace Conference, March 2002.

[9] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M.B. Srivastava, "Optimizing Sensor
Networks in the Energy-Density-Latency Design Space," IEEE Transactions on Mobile
Computing, vol. 1, (no. 1), January-March 2002. p. 70-80. 11 pages. [NOTE: This
inaugural issue appeared late, in June 2002]

[10] C. Schurgers, G. Kulkarni, and M.B. Srivasatava, "Topology Management for Sensor
Networks: Exploiting Latency and Density," The Third ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC 2002), June 2002. 13 pages.

[11] S. Slijepcevic, V. Tsiatsis, S. Zimbeck, M. Potkonjak, and M.B. Srivastava, "On
Communication Security in Wireless Ad-Hoc Sensor Networks," The IEEE Eleventh
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE-2002): Enterprise Security, June 2002. 6 pages.

[12] G. Kulkarni, C. Schurgers, and M.B. Srivastava, "Dynamic Link Labels for Energy
Efficent MAC Headers in Wireless Sensor Networks," Proceedings of the First IEEE
International Conference on Sensors, June 2002. 6 pages.

[13] Boulis, and M.B. Srivastava, "A Framework for Efficient and Programmable Sensor
Networks," Proceedings of the Fifth IEEE Conference on Open Architectures and
Network Programming (OPENARCH'02), June 2002. 12 pages

[14] A. Savvides, H. Park and M. B. Srivastava, " The Bits and Flops of the N-Hop
Multilateration Primitive for Node Localization Problems", Proceedings of the First

 33

ACM International Workshop on Sensor Networks and Applications held in conjunction
with Mobicom, September 2002.

[15] A. Savvides and M. B. Srivastava, " A Distributed Computation Platform for Wireless
Embedded Sensing", Proceedings of ICCD 2002, Freiburg, Germany, September 2002.

[16] Athanassios Boulis and Mani Srivastava, “Node-level Energy Management for Sensor
Networks in the Presence of Multiple Applications”, IEEE International Conference on
Pervasive Computing and Communications (PerCom), March 2003. (Accepted)

[17] Athanassios Boulis, Chih-Chieh Han, and Mani Srivastava, “Design and Implementation
of a Framework for Efficient and Programmable Sensor Networks,” ACM MobiSys,
2003. (Accepted)

[18] Carl D. Worth. xstroke: Full-screen Gesture Recognition for X. In FREENIX Track:
2003 Annual Technical Conference, pages 187-196. June 2003.

[19] Carl D. Worth and Keith Packard. Xr: Cross- device Rendering for Vector Graphics.
Ottowa Liniux Symposium. July 2003.

 34

9 LIST OF ACRONYMS

ARL – Army Research Labs •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ASK – Amplitude Shift Keying

CODEC – Encoder / Decoder

CPU – Central Processing Unit

DARPA – Defense Advanced Research Projects Agency

DSP – Digital Signal Processor

FEC – Forward Error Correction

FFT – Fast Fourier Transform

FPGA – Field Programmable Gate Array

HAL – Hardware Abstraction Layer

ISI – Information Sciences Institute

LOB – Line of Bearing

MAC – Media Access Control

MIT – Massachusetts Institute of Technology

OOK – On/Off Keying

OS – Operating System

P-A – Power Aware

PAC/C – Power Aware Computing and Communications

PCMCIA – Personal Computer Memory Card International Association

PSK – Phase Shift Keying

QAM – Quadrature Amplitude Modulation

RSC – Rockwell Scientific Company (formerly Rockwell Science Center)

RTOS – Real Time Operating System

STEM – Sparse Topology and Energy Management

TDMA – Time Domain Multiple Access

TI – Texas Instruments

UCLA – University of California, Los Angeles

USC – University of Southern California

VLSI – Very Large Scale Integrated

 35

 36

10 LIST OF ADDENDA

[1] “Dynamic Fine-grained Localization in Ad-hoc Networks of Sensors” by Andreas
Savvides, Chih-Chieh Han, and Mani Srivastava. UCLA Technical Report, and paper
submission to Mobicom 2001.

[2] “On modeling networks of wireless microsensors” by Andreas Savvides, Sung Park, and
Mani Srivastava. UCLA Technical Report, and paper submitted to Sigmetrics 2001.

[3] “Tasking Distributed Sensor Networks” Mark Jones, Shashank Mehrotra, and Jae Hong
Park to Journal of High Performance Computing. Accepted for publication.

[4] S. Park, A. Savvides, and M. Srivastava, "Simulating networks of wireless sensors,"
Proceedings of the 2001 Winter Simulation Conference (WSC 2001), December 2001.

[5] C. Schurgers, and M. Srivastava, "Energy efficient routing in wireless sensor networks,"
Proceedings of MILCOM 2001, October 2001.

[6] C. Schurgers, G. Kulkarni, and M. Srivastava, "Distributed assignment of encoded MAC
addresses in wireless sensor networks," Proceedings of the ACM Symposium on Mobile
Ad Hoc Networking & Computing (MobiHoc 2001), October 2001.

[7] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, "Energy-aware wireless
sensor networks", IEEE Signal Processing (special issue on collaborative signal
processing), March 2002.

[8] C. Schurgers, V. Tsiatsis, and M.B. Srivastava, "STEM: Topology management for
energy efficient sensor networks," IEEE Aerospace Conference, March 2002.

[9] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M.B. Srivastava, "Optimizing Sensor
Networks in the Energy-Density-Latency Design Space," IEEE Transactions on Mobile
Computing, vol. 1, (no. 1), January-March 2002. p. 70-80. 11 pages. [NOTE: This
inaugural issue appeared late, in June 2002]

[10] C. Schurgers, G. Kulkarni, and M.B. Srivasatava, "Topology Management for Sensor
Networks: Exploiting Latency and Density," The Third ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC 2002), June 2002. 13 pages.

[11] S. Slijepcevic, V. Tsiatsis, S. Zimbeck, M. Potkonjak, and M.B. Srivastava, "On
Communication Security in Wireless Ad-Hoc Sensor Networks," The IEEE Eleventh
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE-2002): Enterprise Security, June 2002. 6 pages.

[12] G. Kulkarni, C. Schurgers, and M.B. Srivastava, "Dynamic Link Labels for Energy
Efficent MAC Headers in Wireless Sensor Networks," Proceedings of the First IEEE
International Conference on Sensors, June 2002. 6 pages.

[13] A. Boulis, and M.B. Srivastava, "A Framework for Efficient and Programmable Sensor
Networks," Proceedings of the Fifth IEEE Conference on Open Architectures and
Network Programming (OPENARCH'02), June 2002. 12 pages

[14] A. Savvides, H. Park and M. B. Srivastava, " The Bits and Flops of the N-Hop
Multilateration Primitive for Node Localization Problems", Proceedings of the First

 37

ACM International Workshop on Sensor Networks and Applications held in conjunction
with Mobicom, September 2002.

[15] A. Savvides and M. B. Srivastava, " A Distributed Computation Platform for Wireless
Embedded Sensing", Proceedings of ICCD 2002, Freiburg, Germany, September 2002.

[16] Athanassios Boulis, Chih-Chieh Han, and Mani Srivastava, “Design and Implementation
of a Framework for Efficient and Programmable Sensor Networks,” ACM MobiSys,
2003. (Accepted)

Dynamic Fine-Grained Localization in Ad-Hoc Networks of
Sensors

Andreas Savvides, Chih-Chieh Han and Mani B. Strivastava
Networked and Embedded Systems Lab

Department of Electrical Engineering
University of Calfornia, Los Angeles
fasavvide, simonhan, mbsg@ee.ucla.edu

ABSTRACT
The recen t adv ances in radio and em beddedsystem tech-
nologies ha ve enabled the proliferation of wireless micro-
sensor net w orks.Suc h wirelessly connected sensors are re-
leased in many div erse en vironments to perform various mon-
itoring tasks. In many suc h tasks, location aw areness is in-
heren tly one of the most essen tial system parameters. It
is not only needed to report the origins of events, but also
to assist group querying of sensors, routing, and to answer
questions on the netw ork co verage.In this paper we presen t
a no vel approach to the localization of sensors in an ad-
hoc net w ork.We describe a system called AHLoS (Ad-Hoc
Localization System) that enables sensor nodes to discover
their locations using a set distributed iterative algorithms.
The operation of AHLoS is demonstrated with an accuracy
of a few centimeters using our prototype testbed while scal-
abilit y and performance are studied through simulation.

Keywords
location discovery, localization, wireless sensor netw orks

1. INTRODUCTION
1.1 Sensor Networks and Location Discovery
No w ada ys, wireless devices enjoy widespread use in numer-
ous div erse applications including that of sensor netw orks.
The exciting new �eld of wir eless sensor networks breaks
aw ay from the traditional end-to-end communication of voice
and data systems, and introduces a new form of distributed
information exchange. Myriads of tiny embedded devices,
equipped with sensing capabilities, are deplo yed in the en-
vironment and organize themselves in an ad-hoc netw ork.
Information exchange among collaborating sensors becomes
the dominant form of communication, and the netw ork es-
sentially beha vesas a large, distributed computation ma-
chine. Applications featuring such netw ork eddevices are
becoming increasingly prevalen t, ranging from environmen-
tal and natural habitat monitoring, to home netw orking,

medical applications and smart battle�elds. Net w ork ed sen-
sors can signal a machine malfunction to the control cen ter
in a factory , or alternatively w arn about smoke on a remote
forest hill indicating that a dangerous �re is about to start.
Other wireless sensor nodes can be designed to detect the
ground vibrations generated by the silen t footsteps of a cat
burglar and trigger an alarm.

Naturally, the question that immediately follows the actual
detection of events, is: wher e? Where are the abnormal vi-
brations detected, where is the �re, which house is about to
be robbed? T o answer this question, a sensor node needs
to possess knowledge of its physical location in space. Fur-
thermore, in large scale ad-hoc netw orks, knowledge of node
location can assist in routing [5] [6], it can be used to query
nodes o ver a specic geographicalarea or it can be used to
study the coverage properties of a sensor netw ork [31].Addi-
tionally, we envision that location aw areness developed here
will enjoy a wide spectrum of applications. In tactical envi-
ronments, it can be used to track the movements of targets.
In a smart kindergarten [32] it can be used to monitor the
progress of c hildren by trac king their interaction with toys
and with each other ; in hospitals it can keep trac k of equip-
ment, patien ts,doctors and nurses or it can drive con text
aw are services similar to the ones described in [4], [29].

The incorporation of location aw arenessin wireless sensor
netw orks is far from a trivial task. Since the netw ork can
consist of a large number of nodes that are deployed in an
ad-hoc fashion, the exact node locations are not known a-
priori. Unfortunately, the straigh tforw ard solution of adding
GPS to all the nodes in the netw ork is not practical since:

� GPS cannot work indoors or in the presence of dense
vegetation, foliage or other obstacles that bloc k the
line-of-sigh t from the GPS satellites.

� The pow er consumption of GPS will reduce the bat-
tery life on the sensor nodes thus reducing the e�ective
lifetime of the entire netw ork.

� The production cost factor of GPS can become an issue
when large numbers of nodes are to be produced.

� The size of GPS and its antenna increases the sensor
node form factor. Sensor nodes are required to be
small and inobstrusive.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOBILE 7/01 Rome, Italy
© 2001 ACM ISBN 1-58113-422-3/01/07�$5.OO

38

goodelle
Text Box
Appendix A:

To this end, we seek an alternative solution to GPS that
is low cost, rapidly deployable and can operate in many di-
verse environments without requiring extensive infrastruc-
ture support.

Figure 1: WINS Sensor Node from RSC

1.2 Our Work
We propose a new distributed technique that only requires a
limited fraction of the nodes (beacons) to know their exact
location (either through GPS or manual con�guration) dur-
ing deployment and that nevertheless can attain network-
wide �ne-grain location awareness. Our technique, which
we call AHLoS (Ad-Hoc Localization System), relieves the
drawbacks of GPS as it is low cost, it can operate indoors
and does not require expensive infrastructure or pre-planning.
AHLoS enables nodes to dynamically discover their own lo-
cation through a two-phase process, ranging and estimation.
During the ranging phase, each node estimates its distance
from its neighbors. In the estimation phase, nodes with un-
known locations use the ranging information and known bea-
con node locations in their neighborhood to estimate their
positions. Once a node estimates its position it becomes a
beacon and can assist other nodes in estimating their posi-
tions by propagating its own location estimate through the
network. This process iterates to estimate the locations of
as many nodes as possible.

The �rst part of our work examines the ranging challenges.
Since almost all ranging techniques rely on signal propaga-
tion characteristics, they are susceptible to external biases
such as interference, shadowing and multipath e�ects, as
well as environmental variations such as changes in tem-
perature and humidity. These physical e�ects are diÆcult
to predict and depend greatly on the actual environment in
which the system is operated. It is therefore critical to char-
acterize the behavior of di�erent ranging alternatives exper-
imentally in order to determine their usefulness in sensor
networks. To justify our rangining choice we performed a de-
tailed comparison of two promising ranging techniques: one
based on received RF signal strength and the other based on
the Time of Arrival (ToA) of RF and ultrasonic signals. Our
experiments of distance discovery with RF signal strength
were conducted on the WINS wireless sensor nodes [12] (�g-
ure 1) developed by the Rockwell Science Center (RSC). To
perform our evaluation of ToA, we have designed and im-
plemented a testbed of ultrasound-equipped sensor nodes,

called Medusa (from Greek mythology - a monster with
many heads) nodes (�gure 2). To address the variation of
propagation characteristics of ultrasound from place to place
AHLoS estimates the propagation characteristics on the y
in the actual deployment environment. The second part of
our work uses the ranging techniques described above, to
develop a set of distributed localization algorithms. Node
positions are estimated using least squares estimation in an
iterative multilateration process. This ability of AHLoS to
estimate node locations in an ad-hoc setting with a few cen-
timeters accuracy is demonstrated on a testbed comprised
of �rst generation Medusa nodes. Error propagation, sys-
tem scalability and energy consumption are studied through
simulation.

Figure 2: Medusa experimental node

1.3 Paper Organization
This paper is organized as follows: In the next section we
provide some background on localization and we survey the
related work. Section 3 presents the evaluation of our two
candidate ranging methods: Received signal strength and
time of arrival. Section 4 describes the localization algo-
rithms and section 5 is a short study on node and beacon
node placement. In section 6 we discuss our implementation
and experiments. Section 7 discusses the tradeo�s between
centralized and distributed localization and section 8 con-
cludes this paper.

2. BACKGROUND AND RELATED WORK
2.1 Background
The majority of existing location discovery approaches con-
sist of two basic phases: (1) distance (or angle) estimation
and (2) distance (or angle) combining. The most popular
methods for estimating the distance between two nodes are:

� Received Signal Strength Indicator (RSSI) tech-
niques measure the power of the signal at the receiver.
Based on the known transmit power, the e�ective prop-
agation loss can be calculated. Theoretical and empiri-
cal models are used to translate this loss into a distance
estimate. This method has been used mainly for RF
signals.

39

� Time based methods (ToA,TDoA) record the time-
of-arrival (ToA) or time-di�erence-of-arrival (TDoA).
The propagation time can be directly translated into
distance, based on the known signal propagation speed.
These methods can be applied to many di�erent sig-
nals, such as RF, acoustic, infrared and ultrasound.

� Angle -of -Arrival (AoA) systems estimate the an-
gle at which signals are received and use simple geo-
metric relationships to calculate node positions.

A detailed discussion of these methods can be found in [20].
For the combining phase, the most popular alternatives are:

� The most basic and intuitive method is called hyper-
bolic tri-lateration. It locates a node by calculating
the intersection of 3 circles (�gure 3a).

� Triangulation is used when the direction of the node
instead of the distance is estimated, as in AoA systems.
The node positions are calculated in this case by using
the trigonometry laws of sines and cosines (�gure 3b).

� The third method is Maximum Likelihood (ML) esti-
mation (�gure 3c). It estimates the position of a node
by minimizing the di�erences between the measured
distances and estimated distances. We have chosen
this technique as the basis of AHLoS for obtaining the
Minimum Mean Square Estimate(MMSE) from a set
of noisy distance measurements.

Cosines Rule

Sines Rule

b

c

(a)

(c)

(b)

a

C

B

A

A

sina
= B

sinb
= C

sinc

C
2 = A

2 + B
2 + 2ABcos(c)

B
2 = A

2 + C
2
� 2BCcos(b)

A2 = B2 + C2
� 2BCcos(a)

Figure 3: Localization Basics a) Hyperbolic tri-
lateration, b) Triangulation, c) ML Multilateration

2.2 Related Work
In the past few decades, numerous localization systems have
been developed and deployed. In the 1970s, the automatic
vehicle location (AVL) systems were deployed to determine
the position of police cars and military ground transporta-
tion vehicles. A set of stationary base stations acting as
observation points use ToA and TDoA techniques to gen-
erate distance estimates. The vehicle position is then de-
rived through multilaterations, using Taylor Series Expan-
sion to transform a non-linear least squares problem to a

linear [7][8]. Similar approaches can also be found in mili-
tary applications for determining the position of airplanes.

In 1993, the well-known Global Positioning System (GPS)
[34] system was deployed, which is based on the NAVSTAR
satellite constellation (24 satellites). LORAN [28] operates
in a similar way to GPS but uses ground based beacons
instead of sattelites. In 1996, the U.S Federal Communica-
tions Commission (FCC) required that all wireless service
providers give location information to the Emergency 911
services. Cellular base stations are used to locate mobile
telephone users within a cell [9][10]. Distance estimates are
generated with TDoA. The base station transmits a bea-
con and the handset reects the signal back to the base
station. Location information is again calculated by mul-
tilateration using least squares methods. By October 2001,
FCC requires a 125-meter root mean square(RMS) accuracy
in 67% of the time and by October 2006 a 300-meter RMS
accuracy for 95% of the times is required.

Recently, there has been an increasing interest for indoor lo-
calization systems. The RADAR system [1] can track the lo-
cation of users within a building. To calculate user locations
the RADAR system uses RF signal strength measurements
from three �xed base stations in two phases. First, a com-
prehensive set of received signal strength measurements is
obtained in an o�ine phase to build a set of signal strength
maps. The second phase is an online phase during which
the location of users can be obtained by observing the re-
ceived signal strength from the user stations and matching
that with the readings from the o�ine phase. This process,
eliminates multipath and shadowing e�ects at the cost of
considerable preplanning e�ort.

The Cricket location support system [4] is also designed for
indoor localization. It provides support for context aware
applications and is low cost. Unlike the systems discussed so
far, it uses ultrasound instead of RF signals. Fixed beacons
inside the building distribute geographic information to the
listener nodes. Cricket can achieve a granularity of 4 by 4
feet. Room level granularity can be obtained by the active
badge [22] system, which uses infrared signals. The next
development in this area on indoor localization is BAT [29]
[30]. A BAT node carries an ultrasound transmitter whose
signals are picked up by an array of receivers mounted on
the ceiling. The location of a BAT can be calculated via
multilateration with a few centimeters of accuracy. An RF
base station coordinates the ultrasound transmissions such
that interference from nearby transmitters is avoided. This
system relies heavily on a centralized infrastructure.

In the ad-hoc domain, fewer localization systems exist. An
RF based proximity method is presented in [21], in which
the location of a node is given as a centroid. This centroid is
generated by counting the beacon signals transmitted by a
set of beacons pre-positioned in a mesh pattern. A di�erent
approach is taken in the Picoradio project at UC Berkeley.
It provides a geolocation scheme for an indoor environment
[11], based on RF received signal strength measurements
and pre-calculated signal strength maps.

Our system, AHLoS, also belongs to the ad-hoc class. Al-
though uses RF and ultrasound transmissions similar to the

40

Cricket and BAT Systems, it also has some key di�erences.
AHLoS does not rely on a preinstalled infrastructure. In-
stead, it is a fully ad-hoc system with distributed localiza-
tion algorithms running at every node. This results in a
exible system that only requires a small initial fraction of
the nodes to be aware of their locations. Furthermore, it
enables nodes to estimate their locations even if they are
not within range with the beacon nodes. From a power
awareness perspective, it also ensures that all nodes play an
equal role in the location discovery process resulting in an
even distribution of power consumption. The resulting lo-
calization system provides �ne-grained localization with an
accuracy of a few centimeters, similar to the BAT system
without requiring infrastructure support. Finally, unlike all
the systems discussed so far, AHLoS provisions for dynamic
on-line estimation of the ultrasound propagation character-
istics. This renders our approach extremely robust even in
the presence of changing environments.

3. RESEARCH METHODOLOGY
As a �rst step in our study, we characterize the ranging ca-
pabilities of our two target technologies: Received RF signal
strength using the WINS nodes and RF and ultrasound ToA
using the Medusa nodes.

3.1 Ranging Characterization
3.1.1 Received Signal Strength
The signal strength method uses the relationship of RF sig-
nal attenuation as a function of distance. From this rela-
tionship a mathematical propagation model can be derived.
From detailed studies of the RF signal propagation charac-
teristics[18], it is well known that the propagation charac-
teristics of radio signals can vary with changes in the sur-
rounding environment (weather changes, urban / rural and
indoor / outdoor settings). To evaluate signal strength mea-
surements we conducted some experiments with the target
system of interest, the WINS sensor nodes [12]. The WINS
nodes have a 200MHz StrongARM 1100 processor, 1MB
Flash, 128KB RAM and the Hummingbird digital cordless
telephony (DECT) radio chipset that can transmit at 15
distinct power levels ranging from -9.3 to 15.6 dBm (0.12 to
36.31 mW). The WINS nodes carry an omni-directional an-
tenna hence the radio signal is uniformly transmitted with
the same power in all directions around the node. As part
of the radio architecture, the WINS nodes provide a pair of
RSSI (Received Signal Strength Indicators) resisters. RSSI
registers are a standard feature in many wireless network
cards [23]. Using these registers we conducted a set of mea-
surements in order to derive an appropriate model for rang-
ing. We performed measurements in several di�erent set-
tings (inside our lab, in the parking lot and between build-
ings). Unfortunately, a consistent model of the signal atten-
uation as a function of distance could not be obtained. This
is mainly attributed to multipath, fading and shadowing ef-
fects. Another source of inconsistency is the great variation
of RSSI associated with the altitude of the radio antenna.
For instance, at ground level, the radio range at the max-
imum transmit power level the usable radio transmission
range is around 30m whereas when the node is placed at
a height of 1.5m the usable transmission range increases to
around 100m. Because of these inconsistencies, we were only
able to derive a model for an idealized setting; in a football

�eld with all the nodes positioned at ground level. For this
setup we developed a model based on the RSSI register read-
ings at di�erent transmission power levels and di�erent node
separations.

A model (equation 1) is derived by obtaining a least square
�t for each power level. PRSSI is the RSSI register reading
and r is the distance between two nodes. Parameters X and
n are constants that can be derived as functions of distance
r for each power level. Averaged measurements and the
corresponding derived models are shown in �gure 4. Table
1 gives the X and n parameters for each case.

PRSSI =
X

rn
(1)

0 5 10 15 20 25
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

Distance(m)

R
ec

ei
ve

d
S

ig
na

l S
tr

en
gt

h

Measured P=7
LS fit P=7
Measured P=13
LS fit P=13

Figure 4: Radio Signal Strength Radio Characteri-
zation using WINS nodes(power levels P=7,13)

Table 1: RSSI Ranging Model Parameters for WINS
nodes

Power Level dBm mW X n

7 2.5 1.78 21778.338 0.178186
13 14.4 27.54 25753.63 0.198641

With all the nodes placed on a at plane, signal strength
ranging can provide a distance estimate with an accuracy
of a few meters. In all other cases, this experiment has
shown that the use of radio signal strength can be very
unpredictable. Another problem with the received signal
strength approach is that radios in sensor nodes are low cost
ones without precise well-calibrated components, such as the
DECT radios in Rockwell's nodes or the emerging Bluetooth
radios. As a result, it is not unusual for di�erent nodes to
exhibit signi�cant variation in actual transmit power for the
same transmit power level, or in the RSSI measured for the
same actual received signal strength. Di�erences of several
dBs are often seen. While these variations are acceptable for
using transmit power adaptation and RSSI measurements
for link layer protocols, they do not provide the accuracy
required for �ne-grained localization. A potential solution

41

would be to calibrate each node against a reference node
prior to deployment, and store gain factors in non-volatile
storage so that the run-time RSSI measurements may be
normalized to a common scale.

3.1.2 ToA using RF and Ultrasound
To characterize ToA ranging on theMedusa nodes we mea-
sure the time di�erence between two simultaneously trans-
mitted radio and ultrasound signals at the receiver (�gure
5).

Transmitter Receiver

Distance = (T2-T1) x S

T1

T2

Radio Signal

Ultrasound Pulse

Distance

Figure 5: Distance measurement using ultrasound
and radio signals

The ultrasound range on the Medusa nodes is about 3 me-
ters (approximately 11-12 feet). We found this to be a conve-
nient range for performing multihop experiments in our lab
but we note that longer ranges are also possible at higher
cost and power premiums. The Polaroid 6500 ultrasonic
ranging module [17] for example has a range of more than
10 meters (the second generation ofMedusa nodes will have
a 10-15 meter range). We characterize ToA ranging by us-
ing two Medusa nodes placed on the oor of our lab. We
recorded the time di�erence of arrival at 25-centimeter in-
tervals. The results of our measurements are shown in �gure
6. The x axis represents distance in centimeters and the y
axis represent the microcontroller timer counter value.

0 50 100 150 200 250 300
20

40

60

80

100

120

140

Distance (cm)

M
C

U
 ti

m
e

m
ea

su
re

m
en

t

Figure 6: Ulrasound Ranging Characterization

The speed of sound is characterized in terms of the micro-
controller timer ticks. To estimate the speed to sound as
a function of microcontroller time, we perform a best line
�t using linear regression (equation 2). s is the speed of
sound in timer ticks, d is the estimated distance between 2

nodes and k is a constant. For this model s = 0:4485 and
k = 21:485831.

t = sd+ k (2)

This ranging system can provide an accuracy of 2 centime-
ters for node separations under 3 meters. Like the RF sig-
nals, ultrasound also su�ers from multipath e�ects. Fortu-
nately, they are easier to detect. ToA measurement use the
�rst pulse received ensuring that the shortest path(straight
line) reading is observed. Reected pulses from nodes that
do not have direct line of sight are �ltered out using statis-
tical techniques similar to the ones used in [30].

3.2 Signal Strength vs. ToA ranging
On comparing the two ranging alternatives, we found that
ToA using RF and ultrasound is more reliable than received
signal strength. While received signal strength is greatly af-
fected by amplitude variations of the received signal, ToA
ranging only depends on the time di�erence, a much more
robust metric. Based on our characterization results we
chose ToA as the primary ranging method for AHLoS. Simi-
lar to RF signals, the ultrasound signal propagation charac-
teristics may change with variations in the surrounding en-
vironment. To minimize these e�ects, AHLoS dynamically
estimates the signal propagation characteristics every time
suÆcient information is available. This ensures that AHLoS
will operate in many diverse environments without prior cal-
ibration. If the sensor network is deployed over a large �eld,
the signal propagation characteristics may vary from region
to region across the �eld. The calculation of the ultrasound
propagation characteristics in the locality of each node en-
sures better location estimates accuracy. Table 2 summa-
rizes the comparison between signal strength and ultrasound
ranging. One possible solution we are considering for our
future work is to combine received signal strength and ToA
methods. Since the received signal strength method has
the same e�ective range as the radio communication range,
it can be used to provide a proximity indication in places
where the network connectivity is very sparse for ToA local-
ization to take place. The ultrasound approach will provide
�ne grained localization in denser parts of the networks. For
this con�guration, we plan to have the Medusa boards act
as location coprocessors for the WINS nodes.

4. LOCALIZATION ALGORITHMS
Given a ranging technology that estimates node separation
we now describe our localization algorithms. These algo-
rithms operate on an ad-hoc network of sensor nodes where
a small percentage of the nodes are aware of their positions
either through manual con�guration or using GPS. We re-
fer to the nodes with known positions as beacon nodes and
those with unknown positions as unknown nodes. Our goal
is to estimate the positions of as many unknown nodes as
possible in a fully distributed fashion. The proposed loca-
tion discovery algorithms follow an iterative process. After
the sensor network is deployed, the beacon nodes broadcast
their locations to their neighbors. Neighboring unknown
nodes measure their separation from their neighbors and
use the broadcasted beacon positions to estimate their own
positions. Once an unknown node estimates its position,
it becomes a beacon and broadcasts its estimated position
to other nearby unknown nodes, enabling them to estimate
their positions. This process repeats until all the unknown

42

Table 2: A comparison of RSSI and ultrasound ranging
Property RSSI Ultrasound

Range same as radio communication range 3 meters (up to a few 10s of meters)
Accuracy O(m), 2-4m for WINS O(cm), 2cm for Medusa
Measurement Reliability hard to predict, multipath and

shadowing
multipath mostly predictable,time
is a more robust metric

Hardware Requirements RF signal strength must be avail-
able to CPU

ultrasound transducers and ampli-
�er circuitry

Additional Power Requirements none tx and rx signal ampli�cation
Challenges large variances in RSSI readings,

multipath, shadowing, fading ef-
fects

interference, obstacles, multipath

nodes that satisfy the requirements for multilateration ob-
tain an estimate of their position. This process is de�ned
as iterative multilateration which uses atomic multilatera-
tion as its main primitive. In the following subsections we
provide the details of atomic and iterative multilateration.
Furthermore, we describe collaborative multilateration as an
additional enhanced primitive for iterative multilateration
and we provide some suggestions for further optimizations.

4.1 Atomic Multilateration
Atomic multilateration makes up the basic case where an
unknown node can estimate its location if it is within range
of at least three beacons. If three or more beacons are avail-
able, the node also estimates the ultrasound speed of prop-
agation for its locality. Figure 7a illustrates a topology for
which atomic multilateration can be applied.

The error of the measured distance between an unknown
node and its ith beacon can be expressed as the di�erence
between the measured distance and the estimated Euclidean
distance (equation 3). x0 and y0 are the estimated coordi-
nates for the unknown node 0 for i = 1; 2; 3:::N , where N is
the total number of beacons, and ti0 is the time it takes for
an ultrasound signal to propagate from beacon i to node 0,
and s is the estimated ultrasound propagation speed.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

������
������
������
������

(a) (b)

(c)

Unknown Location

Beacon Node

X’

X

1 5

6

3

2 4

Figure 7: Multilateration examples

fi(x0; y0; s) = sti0 �
p
(xi � x0)2 + (yi � y0)2 (3)

Given that an adequate number of beacon nodes are avail-
able, a Maximum Likelihood estimate of the node's position
can be obtained by taking the minimum mean square esti-
mate (MMSE) of a system of fi(x0; y0; s) equations (equa-
tion 4). Term � represents the weight applied to each equa-
tion. For simplicity we assume that � = 1.

F (x0; y0; s) =
NX
i=1

�
2
f(i)2 (4)

If a node has three or more beacons a set of three equa-
tions of the form of (3) can be constructed yield an over-
determined system with a unique solution for the position
of the unknown node 0. If four or more beacons are avail-
able, the ultrasound propagation speed s can also be esti-
mated. The resulting system of equations can be linearized
by setting fi(x0; y0; s) = equation 3, squaring and rearrang-
ing terms to obtain equation 5.

�x2i � y
2
i =

(x20 + y
2
0) + x0(�2xi) + y0(�2yi)� s

2
t
2
i0

(5)

for k such equations we can eliminate the (x20 + y20) terms
by subtracting the kth equation from the rest.

�x2i � y
2
i + x

2
k + y

2
k = 2xo(xk � xi)

+2y0(yk � yi) + s
2(tik

2 � ti0
2)

(6)

this system of equations has the form y = bX and can be
solved using the matrix solution for MMSE [25] given by
b = (XTX)�1XT y where

43

X =

2
6664

2(xk � x1) 2(yk � y1) tk0
2 � tk1

2

2(xk � x2) 2(yk � y2) tk0
2 � tk2

2

...
...

...
2(xk � xk�1) 2(yk � yk�1) tk0

2 � tk(k�1)
2)

3
7775

y =

2
6664
�x21 � y21 + x2k + y2k
�x22 � y22 + x2k + y2k

...
x2k�1 � y2k�1 + x2k + y2k

3
7775

and

b =

2
4 x0

y0
s2

3
5

Based on this solution we de�ne the following requirement
for atomic multilateration.

Requirement 1. Atomic multilateration can take place
if the unknown node is within one hop distance from at least
three beacon nodes. The node may also estimate the ultra-
sound propagation speed if four or more beacons are avail-
able.

Although requirement 1 is necessary for atomic multilater-
ation, it is not always suÆcient. In the special case when
beacons are in a straight line, a position estimate cannot be
obtained by atomic multilateration. If this occurs, the node
will attempt to estimate its position using collaborative mul-
tilateration. We also note that atomic multilateration can
be performed in 3-D without requiring an additional beacon
[33].

4.2 Iterative Multilateration
The iterative multilateration algorithm uses atomic multilat-
eration as its main primitive to estimate node locations in
an ad-hoc network. This algorithm is fully distributed and
can run on each individual node in the network. Alterna-
tively, the algorithm can also run at a single central node or
a set of cluster-heads, if the network is cluster based. Fig-
ure 8 illustrates how iterative multilateration would execute
from a central node that has global knowledge of the net-
work. The algorithm operates on a graphG which represents
the network connectivity. The weights of the graph edges
denote the separation between two adjacent nodes. The al-
gorithm starts by estimating the position of the unknown
node with the maximum number of beacons using atomic
multilateration. Since at a central location all the the entire
network topology is known so we start from the unknown
node with the maximum number of beacons to obtain better
accuracy and faster convergence (in the distributed version
an unknown will perform a multilateration as soon as in-
formation from three beacons). When an unknown node
estimates its location, it becomes a beacon. This process
repeats until the positions of all the nodes that eventually
can have three or more beacons are estimated.

boolean iterativeMultilateration (G)
(MaxBeaconNode, BeaconCount) unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount) unknown
node with most beacons

Figure 8: Iterative Multilateration Algorithm as it
executes on a centralized node

A drawback of iterative multilateration is the error accu-
mulation that results from the use of unknown nodes that
estimate their positions as beacons. Fortunately, this error
accumulation is not very high because of the high precision
of our ranging method. Figure 9 shows the position errors
in a simulated network of 50 Medusa nodes when 10% of
the nodes are initially con�gured as beacons. The nodes are
deployed on a square grid of side 15 meters. The simulation
considers two types of errors: 1) ranging errors and 2) bea-
con placement errors. In both cases a 20mm white Gaussian
error is used. In both cases the estimated node positions are
within 20 cm from the actual positions.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12 13 16 18 20 21 24 26 28 31 34 36 38 40 42 44 47 49

Node Id

E
rr

or
D

is
ta

nc
e

(m
)

Ranging Error Ranging + Beacon Error

Figure 9: Iterative Multilateration Accuracy in a
network of 50 nodes and 10% beacons

4.3 Collaborative Multilateration
In an ad-hoc deployment with random distribution of bea-
cons, it is highly possible that at some nodes, the condi-
tions for atomic multilateration will not be met; i.e. an
unknown node may never have three neighboring beacon
nodes therefore it will not be able to estimate its position
using atomic multilateration. When this occurs, a node may
attempt to estimate its position by considering use of loca-
tion information over multiple hops in a process we refer
to as collaborative multilateration. If suÆcient information
is available to form an over-determined system of equations
with a unique solution set, a node can estimate its position
and the position of one or more additional unknown nodes
by solving a set of simultaneous quadratic equations. Fig-
ure 7b illustrates one of the most basic topologies for which
collaborative multilateration can be applied. Nodes 2 and 4
are unknown nodes, while nodes 1,3,5,6 are beacon nodes.
Since both nodes 2 and 4 have three neighbors (degree d = 3)
and all the other nodes are beacons, a unique position es-
timate for nodes 2 and 4 can be computed. More formally,
collaborative multilateration can be stated as follows: Con-

44

sider the ad-hoc network to be a connected undirected graph
G = (N;E) consisting of jN j = n nodes and a set E of n�1
or more edges. The beacon nodes are denoted by a set B
where B � N and the set of unknown nodes is denoted by
U where U � G. Our goal is to solve for

xu; yu 8u � U by minimizing

f(xu; yu) = Diu �
p
(xi � xu)2 + (yi � yu)2 (7)

for all participating node pairs i; u where i � B or i � U
and u � U . Subject to:
xi; yi are known if i � B, and every node pair i; u is a
participating pair. Participating nodes and participating
pair are de�ned as follows:

Definition 1. A node is a participating node if it is ei-
ther a beacon or if it is an unknown with at least three par-
ticipating neighbors.

In �gure 7b if collaborative multilateration starts at node
2, node 2 must have at least three participating neighbors.
Nodes 1 and 3 are beacons therefore they are participating.
Node 4 is unknown but has two beacons: nodes 5 and 6.
Node 4 is also connected to node 2 thus making both of
them participating nodes.

Definition 2. A participating node pair is a beacon-unknown
or unknown-unknown pair of connected nodes where all un-
knowns are participating.

In this formulation, the nodes participating in collabora-
tive multilateration make up a subgraph of G, for which an
equation of the form of 7 can be written for each edge E
that connects a pair of participating nodes. To ensure a
unique solution, all nodes considered must be participating.
In �gure 7b for example, we have �ve edges thus a set of
�ve equations can be obtained. In some cases other cases ,
we may have a well-determined system of n equations and
n unknowns such as in the case shown �gure 7c. We can
easily observe however, that node X can have two possible
positions that would satisfy this system therefore the solu-
tion is not unique and node X is not a participating node. If
the above conditions are met, the resulting system of non-
linear equations can be solved with optimization methods
such as gradient descend [26] and simulated annealing [27].

The algorithm in �gure 10 provides a basic example of how
a node determines whether it can initiate collaborative mul-
tilateration. The parameter node denotes the node id from
where the search for a collaborative multilateration begins.
The second parameter callerId holds the node id of the node
that calls the particular instance of the function. isInitia-
tor is a boolean variable that is set to true if the node was
the initiator of the collaborative multilateration process and
false otherwise. This is used to set the limit ag that drives
the recursion.

boolean isCollaborative (node, callerId, isInitiator)
if isInitiator==true limit 3
else limit 2
count beaconCount(node)
if count � limit return true
for each unknown neighbor i not previously visited
if isCollaborative (i, node, false) count++
if count == limit return true

return false

Figure 10: Algorithm for checking the feasibility for
collaborative multilateration

Collaborative multilateration can be used to assist iterative
multilateration in places of the network where the beacon
density is low and the requirement for atomic multilateration
is not satis�ed. Figure 11 illustrates how iterative multi-
lateration would call collaborative multilateration when the
requirement for atomic multilateration is not met.

boolean iterativeMultilateration (G)
(MaxBeaconNode, BeaconCount) unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount) unknown
node with most beacons

while isCollaborative (MaxBeaconNode, -1, true)
set all nodes in collaborative set as beacons
(MaxBeaconNode, BeaconCount) unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount) unknown
node with most beacons

Figure 11: Enhanced Iterative Multilateration

Collaborative multilateration can help in situations where
the percentage of beacons is low. This e�ect is shown in
�gure 12. This scenario considers a sensor �eld of 100 by
100 and a sensing range of 10 and two network sizes of 200
and 300 nodes. As shown in the �gure, if the percentage of
beacons is small, the number of node locations that can be
resolved is substantially increased with collaborative mul-
tilateration. This result also shows how network density is
related to the localization process. In the 300 node network,
more node locations can be estimated than in the 200 node
network with the same percentage of beacons. This is due
to the higher degree of connectivity. The e�ects of node and
beacon placement on the localization process is studied in
more detail in section 5.

4.4 Further Optimizations
The accuracy of the estimated locations in the multilater-
ation algorithms described in this section may be further
improved with two additional optimizations. First, error

45

Figure 12: E�ect of collaborative multilateration top, 300 nodes, bottom 200 nodes

propagation can be reduced by using weighted multilatera-
tion. In this scheme, beacons with higher certainty about
their location are weighted more than beacons with lower
certainty during a multilateration. As new nodes become
beacons, the certainty of their estimated location can also
be computed and used as a weight in future multilaterations.
Additionally, by applying collaborative multilateration over
a wider scope, the accumulated error can be reduced. The
solution methodology and further evaluation of these opti-
mizations are part of our future work and will be the subject
of a future paper.

5. NODE AND BEACON PLACEMENT
The success of the location discovery algorithm depends on
network connectivity and beacon placement. In this section,
we conduct a brief probabilistic analysis to determine how
the connectivity requirements can be met when nodes are
uniformly deployed in a �eld. Based on these results, we
later perform a statistical analysis to get an indication on
the percentage of beacons required. When considering node
deployment, the main metric of interest is the probability
with which any node in the network has a degree of three or
more, assuming that sensor nodes are uniformly distributed
over the sensor �eld. In a network of N nodes deployed in a
square �eld of side L, the probability P (d) of a node having
degree d is given by the binomial distribution in equation 8
and the probability PR being in transmission range.

P (d) = P
d

R:(1� PR)
N�d�1

:

N � 1

d

!
(8)

PR =
�R2

L2
(9)

For large values of N tending to in�nity, the above bino-
mial distribution converges to a Poisson distribution. When
taking into account that � = N:PR we get equation 10, the

probability of a node have degree of three or more can be
calculated. Also, an indication of the number of nodes re-
quired per unit area can be calculated in terms of �. Table
3 shows the number of nodes required to cover a square �eld
of size L = 100 and range R = 10 as well as the probabil-
ity for a node to have degree greater than three or four for
di�erent values of �. These probabilities are obtained from
equation 11.

P (d) =
�d

d!
:e
�� (10)

P (d � n) = 1�
n�1X
i=0

P (i) (11)

Table 3: Probability of node degree for di�erent �
values

� P(d � 3) P(d � 4) nodes/10,000m2

2 0.323324 0.142877 39
4 0.761897 0.56653 78
6 0.938031 0.848796 117
8 0.986246 0.95762 157
10 0.997231 0.989664 196
12 0.999478 0.997708 235
14 0.999906 0.999526 274
16 0.999984 0.999907 314
18 0.999997 0.999982 353
20 1 0.999997 392

The connectivity results in �gure 13 show the probabilities of
a node having 0,1,2 or 3 and more neighbors. In addition to
node connectivity, we determine percentage of initial bea-
con nodes required for the convergence of the localization

46

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nodes

P
(n

)

P(n=0)
P(n=1)
P(n=2)
P(n>=3)

Figure 13: Connectivity result for a 100 x 100 �eld
and sensor range 10

algorithm by statistical analysis. Using the same network
setup as before, we report the percentage of nodes that es-
timate their locations while varying the percentage of nodes
and beacons. The results in �gure 14 are the averages over
100 simulations. The �gure shows the percentage of bea-
cons required to complete the iterative multilateration pro-
cess using only atomic multilaterations. We note that the
percentage of required beacons decreases as network den-
sity increases. Also as the network density increases, the
transitions in the required number of beacons become much
sharper since the addition of a few more beacon nodes rein-
forces the progress of the iterative multilateration algorithm.

0
20

40
60

80
100

0

50

100

150

200

250

300
0

20

40

60

80

100

percent of initial beaconstotal nodes

pe
rc

en
ta

ge
 o

f r
es

ol
ve

d
no

de
s

Figure 14: Beacon Requirements for di�erent node
densities

6. IMPLEMENTATION AND EXPERIMEN-
TATION

6.1 Medusa Node Architecture
TheMedusa node design (�gure 2) is based on the AVR 8535
processor [13] which carries 8KB of ash memory, 512 bytes
SRAM and 512 bytes of EEPROM memory. The radio we
use is the DR3000 radio module from RF Monolithics[14].
This radio supports two data rates (2.4 and 19.2 kbps) and
two modulation schemes (ASK and OOK). The ultrasound

circuitry consists of six (60 degree detect angle) pairs of
40KHz ultrasonic transducers arranged in a hexagonal pat-
tern at the center of the board (note that for experimental
purposes the Medusa node in �gure 2 has 8 transducers).
Each ultrasound transceiver is supported by a pair of solid
core wires at an approximate height of 15 cm above the
printed circuit board. We found this very convenient setup
for experimentation since it allows the transceivers to be ro-
tated in di�erent directions. The �rst generation board is
3" x 4" and it is powered by a 9V battery. The Medusa
�rmware is based on an event driven �rmware implementa-
tion suggested in [15]. The radio communication protocols
use a variable size framing scheme, 4-6 bit encoding [16]
and 16 bit CRC. The code for ranging is integrated in the
ad-hoc routing protocol described in the next subsection.

6.2 Location Information Dissemination and
Routing

In our experimental setup all measurements from the nodes
are forwarded to a PC basestation. To route messages to
the base station, we implemented a lightweight version of
the DSDV [19] routing algorithm, which we refer to as DS-
DVlite. Instead of maintaining a routing table with the
next hop information to every node, DSDVlite only main-
tains a short routing table that holds next hop information
for the shortest route to gateway. Furthermore, this algo-
rithm drives the localization process by carrying the location
information of beacons, and by ensuring that the received ul-
trasound beacon signals originate from the same source node
as the radio signals. The ultrasound beacon signal transmis-
sion begins right after the transmission of the start symbol
for each routing packet. After this, the transmission of data
and ultrasound signals proceed simultaneously. By ensuring
that the duration of the data transmission is longer than the
ultrasound transmission, the receiver can di�erentiate be-
tween erroneous ultrasound transmissions from other nodes.
If the data packet is not correctly received because of a col-
lision with another transmission, it also implies a collision of
ultrasound signals hence the ultrasound time measurement
is discarded.

Figure 15: 9 node scenario

47

6.3 Experimental Setup
Our experimental testbed consists of 9Medusa nodes and a
Pentium II 300MHz PC. One node is con�gured as a gateway
and it is attached to the PC through the serial port. Some
of the nodes are pre-programmed with their locations and
they act as beacons. All the nodes perform ranging and they
transmit all the ranging information to the PC that runs
the localization algorithms and displays the node positions
on a sensor visualization tool. The node positions on the
sensor visualization tool are updated at 5-second intervals.
Figures 16 and 15 show some snapshots of node locations.
The beacons are shown as black dots, the unknown nodes
are white circles and the node position estimates are shown
as gray dots. In all of our experiments all the node position
estimates for each unknown node always fall within the 3"
x 4" surface area of the Medusa boards.

Figure 16: 5 node scenario

6.4 Power Characterization
In the previous subsection we veri�ed the correct operation
of our localization system. Our experimental setup will pro-
vide a reasonable solution for a small network but as the
network scales, the traÆc to the central gateway node will
increase substantially. Before we can evaluate the trade-
o�s between estimating locations at the nodes and estimat-
ing locations at a central node we �rst characterize power
consumption of the Medusa nodes at di�erent operational
modes. Using an HP 1660 Logic Analyzer, a bench power
supply and a high precision resistor we characterized the
RFM radio and the AVR microcontroller on the Medusa
nodes.

DR 3000

ADC

Sensor

AS90LS8535

Power
Supply

HP 1660

VSensor Rtest

ISensor

C1 C2

Vtest

testplySensor VVV −= sup

test

test
sensor R

V
I =

sensorsensor VIPower ×=

timePowerEnergy ×=

Figure 17: Power and Energy Relationships and
Measurement Setup

The measurement setup and power/energy relationships are

shown in �gure 17. The power consumption for di�erent
modes of the AVR microcontroller are shown in table 4.
The power consumption for the di�erent modes of the RFM
radio are shown in �gure 18 and table 5.

Table 4: AVR 8535 Power Characterization
AVR Mode Current Power

Active 2.9mA 8.7mW
Sleep 1.9mA 5.9mW

Power Down 1�A 3�W

1 2 3 4 5 6
9

10

11

12

13

14

15

16

17

18

Power Level

C
on

su
m

ed
 p

ow
er

(m
W

)

2.4kbps OOK
2.4kbps ASK
19.2kbps OOK
19.2kbps ASK
RX mode

Figure 18: RFM Radio power consumption at dif-
ferent operational modes

7. TRADEOFFS BETWEEN CENTRALIZED
AND DISTRIBUTED SCHEMES

One important aspect that needs to be determined is whether
the location estimation should be done in a centralized or
distributed fashion. In the former case, all the ranging mea-
surements and beacon locations are collected to a central
base station where the computation takes place and the re-
sults are forwarded back to the nodes. In the latter, each
node estimates its own location when the requirements for
atomic multilateration are met. For the AHLoS system, we
advocate that distributed computation would be a better
choice since a centralized approach has several drawbacks.
First, to forward the location information to a central node,
a route to the central node must be known. This implies the
use of a routing protocol other than location based routing
and also incurs some additional communication cost which
is also a�ected by the eÆciency of the existing routing and
media access control protocols. Second, a centralized ap-
proach, creates a time synchronization problem. Whenever
there is a change in the network topology the node's knowl-
edge of location will not instantaneously updated. To cor-
rectly keep track of events, the central node will need to
cache node locations to ensure consistency of event reports
in space and time. Third, the placement of the central node
implies some preplanning to ensure that the node is easily
accessible by other nodes. Also, because of the large volume
of traÆc to and from the central node, the battery lifetime
of the nodes around the central node will be seriously im-
pacted. Fourth, the robustness of the system su�ers. If
the routes to the central node are broken, the nodes will

48

Table 5: RFM Power Characterization
Mode Power

Level
OOK Modulation ASK Modulation

2.4Kbps 19.2Kbps 2.4Kbps 19.2Kbps
mW mA mW mA mW mA mW mA mW

Tx 0.7368 4.95 14.88 5.22 15.67 5.63 16.85 5.95 17.76
Tx 0.5506 4.63 13.96 4.86 14.62 5.27 15.80 5.63 16.85
Tx 0.3972 4.22 12.76 4.49 13.56 4.90 14.75 5.18 15.54
Tx 0.3307 4.04 12.23 4.36 13.16 4.77 14.35 5.04 15.15
Tx 0.2396 3.77 11.43 4.04 12.23 4.45 13.43 4.77 14.35
Tx 0.0979 3.13 9.54 3.40 10.35 3.81 11.56 4.08 12.36
Rx - 4.13 12.50 4.13 12.50 4.13 12.50 4.13 12.50
Idle - 4.08 12.36 4.08 12.36 4.08 12.36 4.08 12.36
Sleep - 0.005 0.016 0.005 0.016 0.005 0.016 0.005 0.016

not be able to communicate their location information to
the central node and vice versa. Finally, since all the raw
data is required, the data aggregation that can be performed
within the network to conserve communication bandwidth
is minimal. One advantage of performing the computation
at a centralized location is that more rigorous localization
algorithms can be applied such as the one presented in [35].
Such algorithms however require much more powerful com-
putational capabilities than the ones available at low cost
sensor nodes. Overall, a centralized implementation will not
only reduce the network lifetime but it will also increase its
complexity and compromise its robustness. On the other
hand, if location estimation takes place at each node in a
distributed manner the above problems can be alleviated.
Topology changes will be handled locally and the location
estimate at each node can be updated at minimal cost. In
addition, the network can operate totally on location based
routing so the implementation complexity will be reduced.
Also since each node is responsible for determining its loca-
tion, the localization is more tolerant to node failures.

To evaluate energy consumption tradeo�s between the cen-
tralized and distributed approaches we run some simulations
on a typical sensor network setup. In our scenario the cen-
tral node is placed at the center of a square sensor �eld.
Furthermore, we assume the use of an ideal, medium access
control(MAC) and routing protocols. The MAC protocol is
collision free and the routing protocol always uses the short-
est route to the central node. The total number of bytes
transmitted by all the nodes during both distributed and
centralized localization is recorded. The network size var-
ied with the network density kept constant by using a value
of � = 6 or 117 nodes for every 10,000m2 (from table 3).
The simulation setup considers the same packet sizes as the
implementation on the medusa nodes. For the centralized
system each node forwards the range measurements between
all its neighbors. If the node is beacon it also forwards its
location information (this is 96 bits long which is equiva-
lent to a GPS reading). Once the location is computed, the
central node will forward the results back to node the cor-
responding unknown nodes. In the distributed setup, each
node transmits a short beacon signal (radio and ultrasound
pulse) followed by the senders location if the sender is a
beacon. In both cases, the simulation runs for one full cycle
of the localization process(until all feasible unknown node

positions are resolved). The average number of transmitted
bytes for each case are shown in �gures 19 and 20 for 10%
and 20% beacon density respectively. The results shown in
the �gure are averages of over 100 simulations with random
node placement following a uniform distribution.

0

100

200

300

400

500

600

700

B
yt

es
T

ra
sm

itt
ed

Thousands

100 200 300 400 500 600 700

Netw ork Size

Distributed Centralized

Figure 19: TraÆc in distributed and centralized im-
plementations with 10% beacons

Figure 21 shows the average energy consumption per node
for the Medusa nodes when the radio transmission power
is set to 0.24mW. This result is based on the power char-
acterization of the Medusa nodes from the previous sec-
tion. We also node that the energy overhead for the ultra-
sound based ranging is the same for both centralized and
distributed schemes therefore it is not included in the en-
ergy results presented here. These results show that in the
distributed setup has six to ten times less communiocation
overhead than the centralized setup. Another interesting
trend to note is that in the centralized setup, network traf-
�c increases as the percentage of beacon nodes increases. In
the distributed setup however, the traÆc decreases as the
percentage of beacon nodes increases. This decrease in traf-
�c is mainly attributed to the fact that most of the times
the localization process can converge faster if more beacon
nodes are available; hence less information exchange has to
take place between the nodes.

49

Figure 21: Average energy spent at a node during localization with a) 10% beacons, b) 20% beacons

0

100

200

300

400

500

600

700

800

900

B
yt

es
T

ra
ns

m
itt

ed
(t

ho
us

an
ds

)

100 200 300 400 500 600 700

Network Size

Distributed Centralized

Figure 20: TraÆc in distributed and centralized im-
plementations with 20% beacons

8. CONCLUSIONS
We have presented a new localization scheme for wireless
ad-hoc sensor networks. From our study we found that the
use of ToA ranging is a good candidate for �ne-grained lo-
calization as it is less sensitive to physical e�ects. Received
RF signal strength ranging on the other hand is not suit-
able for �ne-grained localization. Furthermore, we conclude
that our �ne-grained localization scheme should operate in
a distributed fashion. Although more accurate location esti-
mations can be obtained with centralized implementation, a
distributed implementation will increase the system robust-
ness and will result in a more even distribution of power
consumption across the network during localization. Fur-
thermore, the implementation of our testbed proved to be
an indispensable tool for understanding and analyzing the
strengths and limitations of our approach. Although our
system performed very well for our experiments, we rec-
ommend the use of a more powerful CPU on the on the

sensor nodes for the following reasons. First, RF and ul-
trasound ToA ranging requires the use of a dedicated high
speed timer. In our implementation the 4MHz AVR micro-
controller is dedicated to localization and this is suÆcient.
If however, the microcontroller is expected to perform ad-
ditional tasks at the same time a higher performance pro-
cessor is highly recommended. Based on our experience, we
are currently developing a second generation of theMedusa

nodes. These nodes will be capable of performing hybrid
ranging by introducing the fusion of both ultrasonic ToA
ranging and received signal strength RF ranging. Finally,
in this initial study we found that the accuracy of iterative
multilateration is satisfactory for small networks but needs
to be improved for larger scale networks. To this end, as
part of our future work we plan to extend our algorithms
to achieve better accuracy by limiting the error propagation
across the network.

Acknowledgments
This paper is based in part on research funded through
NSF under grant number ANI-008577, and through DARPA
SensIT and Rome Laboratory, Air Force Material Com-
mand, USAF, under agreement number F30602-99-1-0529.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Any opinions, �ndings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reect the
views of the NSF, DARPA, or Rome Laboratory, USAF. We
also thank the anonymous reviews for their detailed feedback
and suggestions.

9. REFERENCES
[1] P. Bahl, V. Padmanabhan, RADAR: An In-Building

RF-based User Location and Tracking System
Proceedings of INFOCOM 2000 Tel Aviv, Israel,
March 2000, p775-84, vol. 2

[2] AVL Information Systems, Inc ,

50

http://www.avlinfosys.com/

[3] Deborah Estrin, Ramesh Govindan and John
Heidemann, Scalable Coordination in Sensor Networks
Proceedings of Fifth Annual ACM/IEEE International
Conference on Mobile Computing and Networking,
Seattle, WA, Aug 1999, p263-70

[4] N. Priyantha, A. Chakraborthy and H. Balakrishnan,
The Cricket Location-Support System, Proceedings of
International Conference on Mobile Computing and
Networking, pp. 32-43, August 6-11, 2000, Boston, MA

[5] J.Li, J. Jannotti, D. S. J. DeCouto, D. R. Karger and
R. Morris A Scalable Location Service for Geographic
Ad-Hoc Routing Proceedings of ACM Mobile
Communications Conference, August 6-11 2000,
Boston, Massachusetts

[6] K. Amouris, S. Papavassiliou, M. Li A Position-Based
Multi-Zone Routing Protocol for Wide Area Mobile
Ad-Hoc Networks, Proceedings of VTC 99

[7] G. Turing, W. Jewell and T. Johnston, Simulation of
Urban Vehicle-Monitoring Systems IEEE Transactions
on Vehicular Technology, Vol VT-21, No1. Page 9-16,
February 1972

[8] W. Foy Position-Location Solution by Taylor Series
Estimation IEEE Transactions of Aerospace and
Electronic Systems Vol. AES-12, No. 2, pages 187-193,
March 1976

[9] J. Ca�ery and G. Stuber, Subscriber Location in
CDMA Cellular Networks IEEE Transactions on
Vehicular Technology, Vol. 47 No.2, pages 406-416,
May 1998

[10] J. Ca�ery and G. Stuber, Overview of Radiolocation
in CDMA Cellular Systems IEEE Communications
Magazine, April 1999

[11] J. Beutel, Geolocation in a PicoRadio Environment
Masters Thesis, UC Berkeley. July 1999.

[12] Wireless Intergated Network Systems(WINS)
http://wins.rsc.rockwell.com/

[13] Atmel AS90LS8535,
http://www.atmel.com/atmel/products/prod200.htm

[14] DR3000 ASH Radio Module,
http://www.rfm.com/products/data/dr3000.pdf

[15] M. Melkonian, Getting by without an RTOS
Embedded Systems Programming, September 2000

[16] RFM Software Designer's Guide,
http://www.rfm.com/corp/apnotes.htm

[17] Polaroid 6500 ultrasonic ranging kit,
http://www.acroname.com/robotics/parts/R11-
6500.html

[18] T. Rappaport Wireless Communications Principle and
Practice Prentice Hall, 1996

[19] C. Perkins and P. Bhaghwat, Highly Dynamic
Destination Sequenced Distance-Vector Routing In
proceedings of the SIGCOMM 94 Conference on
Communication Architectures, Protocols and
Applications, pages 234-244, August 1994.

[20] J. Gibson, The Mobile Communications Handbook
IEEE Press 1999

[21] N. Bulusu, J. Heidemann and D. Estrin, GPS-less Low
Cost Outdoor Localization For Very Small Devices,
IEEE Personal Communications Magazine, Special
Issue on Networking the Physical World, August 2000.

[22] R. Want, A. Hopper, V. Falcao and J. Gibbons, The
Active Badge Location System. ACM Transactions on
Information Systems 10, January 1992, pages 91-102

[23] WaveLAN White specs, www.wavelan.com
products

[24] UCB/LBNL/VINT Network Simulator - ns (version 2)
http://www.isi.edu/nsnam/ns/

[25] W. Greene, Econometric Analysis, Third Edition,
Prentice Hall 1997

[26] D. J. Dayley and B. M. Bell, A Method for GPS
Positioning IEE Trans., Aerosp. Electron. Syst., 1996,
32,(3),pp. 1148-54

[27] W. H. Press, et al. Numerical recipes in C: the art of
scienti�c computing, 2nd ed.. Cambridge ; New York:
Cambridge University Press, 1992.

[28] LORAN
http://www.navcen.uscg.mil/loran/Default.htm#Link

[29] A. Harter, A. Hopper, P. Steggles, A. Ward and
P.Webster, The Anatomy of a Context Aware
Application In Proceedings ACM/IEEE MOBICOM
(Seattle, WA, Aug 1999)

[30] A. Harter, A. Hooper A New Location Technique for
the Active OÆce IEEE Personal Communications vol
4,(No. 5), October 1997, pp. 42-47

[31] S. Meguerdichian , F. Koushanfar, M. Potkonjak and
M. B. Srivastava Coverage Problems in Wireless
Ad-hoc Sensor Networks, In proceedings of Infocom
2001, Ankorange, Alaska

[32] M. B. Srivastava , R. Muntz and M. Potkonjak, Smart
Kindergarten: Sensor-based Wireless Networks for
Smart Developmental Problem-solving Environments
In Proceedings of ACM/IEEE MOBICOM 2001

[33] D. E. Manolakis, EÆcient Solution and Performance
Analysis of 3-D Position Estimation by Trilateration
IEEE Transactions on Aerospace and Electronic
Systems vol 32, p1239-48, October 1996

[34] E. Kaplan, Understanding GPS Principles and
Applications Artech House, 1996

[35] L. Doherty, K. Pister and L. E. Ghaoui, Convex
Optimization Methods for Sensor Node Position
Estimation Proceedings of INFOCOM 2001,
Anchorage, Alaska, April 2001

51

On Modeling Networks of Wireless Microsensors

Andreas Savvides, Sung Park and Mani Srivastava
Electrical Engineering Department

University of California, Los Angeles
{asavvide, spark, mbs}@ee.ucla.edu

1. INTRODUCTION
Recent advances in low-power embedded processors, radios,
and micro-mechanical systems (MEMs) have made possible the
development of networks of wirelessly interconnected sensors.
With their focus on applications requiring tight coupling with
the physical world, as opposed to the personal communication
focus of conventional wireless networks, these wireless sensor
networks pose significantly different design, implementation,
and deployment challenges. Their application-specific nature,
severe resource limitations, long network life requirements, and
the presence of sensors lead to interesting interplay between
sensing, communications, power consumption, and topology
that designers need to consider. Existing tools for modeling
wireless networks focus only on the communications problem,
and do no support modeling the power and sensing aspects that
are essential to wireless sensor network design. In this paper, we
present a set of models and techniques that are embodied in a
simulation tool [1] for modeling wireless sensor networks. Our
models are derived with detailed power measurements involving
2 different types of sensor nodes representing two extremes;
high-end WINS nodes [2] by Rockwell and low-end
experimental nodes that we have built. The WINS nodes have a
StrongARM S1100 processor and a 100m-range radio and can
carry a wide variety of sensors. The experimental nodes feature
an AVR 90LS8535 microcontroller from Atmel and a low
power radio 20m-range from RFM Monolithics and a similar to
the COTS nodes from UC Berkeley [3].

To instrument sensor network scenarios in a simulation
environment, more features need are also introduced. The notion
of a sensing channel is used to propagate stimuli to the sensors.
Target models are responsible for generating the stimuli that
trigger the sensors, which in turn become communication traffic
towards a central base station. All these actions affect power
consumption, which directly affect the useful lifetime of the
network. Since power consumption is a crucial factor we focus
our study on empirical measurements of power consumption on
sensor nodes that can be use to produce accurate models in a
simulation environment. The sections that follow provide a brief
overview of the sensor node and battery models and present the
results of our power measurements.

2. SENSOR NETWORK AND NODE
MODELS
A sensor network is modeled as a set of heterogeneous entities.
Sensor nodes deployed over the area of interest are triggered by
a certain set of stimuli that eventually result in a sensor report
that is transmitted to a remote base station. Following this
paradigm in a simulation environment, three main types of

sensor nodes need to be created supported: 1) target nodes that
stimulate the sensors, 2) sensor nodes to monitor events and 3)
user nodes that query the sensors and are the final destination of
the target reports.

The most interesting model is that of the sensor node. In
addition to the communication protocol stack, this node model
also includes a sensing stack that provides the interface to the
sensor physical layer. The two stacks are connected together
with an application layer, and together they constitute the
algorithmic component of the node. To model power
consumption, power models of the individual components are
provided together with a battery model. As the protocols
execute on the hardware, a corresponding amount of energy is
depleted from the battery. Figure 1 provides an overview of the
node model. This provides a flexible parametrizable model that
can be applied to different sensor node architectures. The
challenge in achieving an accurate sensor node model is to
understand how the node consumes power.

3. BATTERY MODELS
3.1 Linear Battery Model
In this model, the battery is treated as linear bucket of energy.
The maximum capacity of the battery is achieved regardless of
what the discharge rate is. Such a model allows the user to
examine the efficiency of applications by providing a simple
metric of energy consumption. The remaining capacity after

Figure 1 Sensor Node Model

52

goodelle
Text Box
Appendix B:

operation duration of time td can be expressed by following
equation. Remaining capacity (in Amp*Hour) =

∫
+

=

−=
dtt

tt

dttIUU
0

0

)(’ , where ’U is the previous capacity and

I(t) is the instantaneous current drawn from the sensor node at
time t.

3.2 Discharge Rate Dependent Model
The maximum battery capacity is very much dependent on the
discharge rate or the rate at which the current is withdrawn from
the battery. At high discharge rates, the battery capacity is
significantly reduced. To consider this effect of discharge rate
dependency, we introduce factor k which is the battery capacity
efficiency factor that is determined by the discharge rate. The

definition of k is,
tot

eff

C

C
k = , where Ceff is the effective battery

capacity and Ctot is the total rated capacity of the battery with
both terms expressed in unit of Ampere*hour(Ah).

3.3 Relaxation Model
Real-life batteries exhibit a general phenomenon called
"relaxation". The relaxation occurs when the discharge current
from the battery is cutoff or reduced after draining the battery at
high discharge rate. As the discharge rate of the battery drops,

the battery’s cell voltage recovers, and the battery has a chance
to recover the capacity lost due to the high discharge rate. The
relaxation phenomenon is adapted to our battery model to
simulate the behavior of real life battery.

4. POWER CHARACTERIZATION
Sensor node power consumption depends on the node’s mode of
operation (receive, transmit, sleep, power down). During its
lifetime, a node may switch between different operational
modes according to a specific task or power management
scheme. By measuring the power consumption at the different
operational modes accurate models can be constructed and
useful insight can be obtained about the individual components
of the sensor nodes.

Using an HP 1660 oscilloscope and a high precision resistor we
measured the power consumption of the radio and CPU of 2
types of nodes (WINS and Experimental nodes) at different
operational modes. Table 1 shows the power measurements for
the CPUs on the 2 nodes. The power consumption for the
WINS radio is shown in table 2. The power consumption for the
RFM radio is shown in table 2 and figure 2.

These measurements show some notable trends of how power
consumption is distributed in a sensor node. In both nodes, the
radio consumes the most power; 50-67% of the total power
consumption. Furthermore, the difference in power consumption
between transmission and reception in low power radios is very
small. For the WINS radio the transmission power is at most 2
times greater than reception and 1.4 times greater for the RFM
radio. At some power levels, the transmit power is smaller than
the receive power (figure 2).

5. REFERENCES
[1] ns-2 simulator, http://www.isi.edu/nsnam/ns

[2] Wireless Integrated Networks Systems (WINS),
http://wins.rsc.rockwell.com

[3] http://www.cs.berkeley.edu/~jhill/tos/

[4] DR3000 ASH Radio Module,
http://www.rfm.com/products/data/dr3000.pdf

Table 1 CPU Measurements for WINS and
Experimental Nodes

Table 3 RFM Radio Measurements

Figure 2 RFM Radio Power Comparisons

Table 2 WINS Radio Measurements

53

������� ���	
���	� ����
 �	��
��

���� �� ��	
� ����	� �
�����

��
 �� ����

�
 �����
� �
�����
	� �� ��
������� �	� ������
� �	��	

��	�

�����	�� �
� �

��������

����������	
������� ����� ���
��� ����	� ���������� ��
 ������������ �� ���

���������� ��������� ��	 ��������� 	��� ��� �������� ������������ ���� �����

���
��� ������ ��	 ������� 	��� �� ������� � ������� ���	 �� ����� � ��� ���
���

�� ����� ��� ����� �	�� ���� �� �������� ��������� � ���� �� ����� ����� �����

���
��� ��� ����	� �������� ���������� ������� ���� ����� � ������� ��	 ���� �

��� � ������ ��������� !��� ���
������� �������� �
����� ����� ����� ���
���

���� � �������� ������ �
�� ��������� � ������� � ����������� ������ ���������

"
�� ���������� �� ��� �	� ������ �����	��� �
 �
�� ���	
��� ��	 �
�� �
���

�������� �������� ��� ����	� ���������� ������� �� �
�� ���������� #� ���� ���

����
� ������� ��������� �� �������� �
�� �� ��� 	���������	 ������ ������ ������

���� $��� �� ��� ��	���	��� �	� ������ %���� 	���������	 ��������� 	��������
����

��� � ����� �	��
��� �� �����	
��� � ����� ���� ����� ��	
���� ����� �	��

���� ������	
�������� ���������
� 	������ ��� ���	 ���� ���� ��� ���	��� ���
��� �� ��� �����

��� �Æ�� ����� �������� ��� �!"##"$"�%!#&

�

54

goodelle
Text Box

goodelle
Text Box
Appendix C:

��� ������ �� �� �	�� ����� ��������� �
��� %�� ��� � ��� ��������� �� � �&���	

��� � ������ ������� ���� � ��� ������ ���
��� #� ���� ������
� ���� � ����������

�������� � ����� ��������� ����
��� �&������� ��������� ��������

� �������	�
��

� �������	�
� �
���� �
���� �� � ����
� ������
� �� ���� �
���� ���
� ���� ����

�	�����
 ��� � ��
�
�� �
����� ��
�� �	
�� ��
 �������	�
� �
���� �
���� �� ���	��

����������� �� ��
 ��
� �� ���� ��
 �
���� �� ��
������� ��
 �
���� ���
� ����
� ���

��������� �� ��
�� ��������
�������
��� �	�� �� ���	���� ���� �� �
����� ����� ��� ��
�

������������
�� ����
�� ���� ���� �� ���� ���
�� �� 	�
� �	
��
�� ��
�
 ���
� ��
 �����

��� ��
��
����
 �� ���� ��� ��
 �
�����
�� �� ����
 �	��
�� �� ���
�� � �
�	�������

�
������� ���
 ���� ��
 �����	� �	��
� �� �
���� ���
� �
�	��
� �� ���
� �� ��
�� ����

�
� �
��������� ��� �
 ����
��
�� !��
 �
����
�� �� �� ��Æ�	��� �� ��� ���������
� �� ��� �

�

�
��� �	���� �� ��
 ���
�" ��
� ��
 �����
� �� ��
�� �������
�
��� �	���� ��	� ���

��
� ��� ���	��
 ���� ��

�������
��� #�
�
Æ��
��� ��� ����
�������� ��
�
���
� ��

�����$���� �������	���� �� ��
 ���
���
 �� ��
 �
�����

#�
� �����
�
�� �	�� �
 ����������
� �� ��� �
�
�� �� ��
 �
���� �
���� �
�����

#�
� �����
�
�� �� ��
 ���
 �
�
�� ����	���� �� ��
� ������
 ��� � ��
� ���
 ���

������ ����
�� ��� ������
 �����$���� ������� �� ��
� ����	������� ���� ���
� �
�����
�

� �
���� ��� ��������� ��� %	�
� �	
��
�& �� ��
 �
���� ���
� �� �	�� � �� �� �� �����

��� ������
 ��
� ����	������ ����� ��
 �
���� ���
�� ���� �	
�� ������� ����
�� ���

'

55

goodelle
Text Box

�
 �����
� �� � �
����� ������� ����� ���� �������
� ���
��
�
� ������ ��
��

� ���� �������

��� ��� �
���� �����
����
 ��� ��

����
 �
����� ���� ���	����� ��
�
�� �	(
�� ��

�����������
� ���
� �� �
������)
� ����
��� ��
� �� ��	�� ���
����
� �� ������������ ����

�	�������� �����
�
���� ��� ��
 �

� ��� ������	�	� 	����
�� *���
��� ���� ���
� ��
�
���

�������	�
� ���������� ��� �������� ��
� �� ��
 ����
� �
�
�� ��
�
 ������� ����������

�
�
����
 ���� �
� �� �
���� ���
� ��� �
 ����
� ��� � ���
� 	�
� �	
�� ��� ����

�
���� ���
� ��� �
���� �� �� ���
 ����
 ����
����� ��
�� +	���
��
�
��� ����	������

�� ������
� ����� ��
 ���
� �� ����� �
�� ����� �� ��
 ���
���
 ��
� �� �
���� �
�����

���� ���
� �� ������)
� �� ������� ,
����� ' ����	��
� ������� �
�
���� �� �������	�
�

�
���� �
������ ,
����� - ��
�
��� ��
 ����� �������	�
� ��������� ��� ������� ��
 �
�����

,
����� .
�����
� ���������� �� ���� ������� ��������� ���� �& ������� �
���� ���
 ��
Æ�

��
���� 	����)��� ��
 �
�	������ �� ���
 ���������� �& ���� ������
 ��
 �
���� �� �
�
�����

����������
 ���
� �� ���� ���
��� �	
��� ��� �&
��	�
 ���� �	����� �� �
���� ���
���
 ���

�	
��
�� /
�	��� ���� ���	������ ���
�� ��
 ��
�
��
� �� ,
����� 0 ���� �
��������
 ����

��
�
 �������	�
� ���������� ��� ����
��
 ��

(
����
 �
���� �
���� ���
���
� ,
����� 1

���
� �����	���� �
����� ����� ��� � ����	����� �� �	�	�
 ����

� ����� ����

2������	�
� �
���� �
����� ��
 � ����� ��� �����
 ��
� �� �
�
����� 2	
 �� ��
 	���	

��
������ �
�	��
�
��� �� ��
�
 �
����� �
 ��������
� ��� �
����� ��
 �
�	��
� �� ������

�
�� �
�
� �� ��
������� ���� �
����� ���
� �� ��
���
 �� ��
 ��� �� ���� ��
� ���� ��

-

56

goodelle
Text Box

���� �
�
���� �� ���� ���
��

��� ���� ��	�
 �����������

� ������� ���� �� ��
 �
���� �� �
���� ���
� �� ��
 ��
����� �� � �
�� ������ �� ��
��

��
��
����
 �
���
� 3��� �� �45� ��� /���
�� ��� �
� �� ��
 ���
������� �� �
������ ����

�
������ ��� ����	�������� �� �������
���� ��������� 6�1� '7� ��
 ,�����2	�� ���8
�� 697

�����
� �� ���
������
 �� ��
 ����������� ��
 �� ����� ����
� �
���� �
������ ��
 ���8
��

	�
� :;:,����
� �
���� ���
� ����������
�� � �	��� ������
�
� �� ��)
 ���� ����	���

���
 ��� � ���
 ������� ��
��� ���
� ��� � ��

 ����
 ������� ����� ��
�
 ���
� ����
 ��

���
 ���� � <�	�
 ��
�
��� 6�.7 ���
������ ��
� ����	������ �� �������� �
�
��� ��

��:#, ���8
�� 6��7 �� �
������� ��
�����
 ���
�� ������
 ��� ����
 ���
�� ��� ������

���� �
�

� ��
 ���
�� � ���	� �� ���� ���8
�� �� ��
 ���
������� �
�

� ������
 ����

��� ���

�
�����	����� ����
�(� ��� ������
 ���� ��� ����
 ���
�
��� ����	������

6�'7� ��
 #���/���� ���8
�� ����
�� ��

�
���
Æ��
���
� ���� ��� �
 �
���)
� ����	��

���
�	� ������)����� �� ��
 ����� �
����� ������	����� ��
 ��������� :�4� ��� �
����

���
�� 6�=7� /���
�� ,��
��
 4
��
� ��� �
�
���
� � �������
���� 	��� ��� ������������

�� ����
� ��������� ���
�������
���� ���������� 6�>7�

��� ������� ����� ������ ��� ���������� ������������

?
���� ���
� �
���� ��� ����
 �
���� �
����� 6�07 ���� ��� �� ��� ����� ��
 ���

�
���

����
������� ����� ���� �������
 ���
 ������
��	�
� ;������ ��� ���
�����
 ����
 �
����

.

57

goodelle
Text Box

�
����� ��� ��
�� ������������ �� 6-7� ��
� ������
 � �
� �� �������	�
� ���������� �	�����

��
��� ���
 ���� ��
 �
��������
 ��� ��� ��
 �
����� ��� ����	�������� ������ � ��	��
����

��������� ��� �
�
����� ����� ��	��
� �
��� �� ���� �
�����
�� ��� ��� ��������
� �������
��)
�

�� �
��� �� ���	���
�� ���
�
��� �������� ��
 ���
 ���	� ����	��
� ��	���� �� �
����

�
����� 6''7 ��� ������	�
� �� ����������� ��
 ���� ;�
��� 4���
������� ���������

% ;4�& ��� ��
 �������
 +��
���� ;�
��� 4���
������� ��������� %�+;4�&� ��
 ����
�

�����
� �(��
 ����� ��� ����
� �(����
� ��	�
 ���
��� ��� ��
� �������� ��
 ����
� 	�
�

����������� ���	� ���
 �
����� �� �������
�� �
� �
��������� ���
� �����
 �
���� ���Æ��

;������ ��� ��� ���� �
�����
 � �
���� ��
���
�� ����	�������� ����
��� �
�

� ��
 ���
�

��� 2��
��
� 2�(���� 607� #����
� ��� ��� 6'>7 �
�����
 � �������� �	��
 ��� �
���� �
����

�
�
��� �
������� ��� ��
 ���������� ��� ������
�� �� ���
 ����� ��
����������� ��	�
�

����� ��
 ���
�� � :�4 �������� ��� ���
������� �
�

� � �����
 ���
 ��� ��
 �
��

�� ��
 �
���� �� ���� ����	��
�� ��
�
 ��������� ��� �� ������)
 �
����
� ����� ���
�

��� ��
 ���	�� �� ����������� ����
� ������� �� �
������
� �� ����
��

�
��� �� �����
� ��

����������� ��������� �
�

�
��� ����������� ��
 ��� �� ������� *�
����� ��� ��� 617 ������

� �	�����
�
� �
 �	�8� �
���� ��� ��� ���� ���� �
���� ����
�
� ��	�� ���
����
 �����

��� � � �����
� �
�
������)
� ��	���� ���
�
�

��� ������ ����� ��������� �����

,�	��
� ����	��
� �� @��) ��� ,�
�� 6'�7 ������
 ����������� �� ��

�
��� ����	���

���� ����
��� �� ����� ��
�
�� �
���
�A���
����
�� ��
� ��� ���� ��
 ���
 ��
�� �� ��

0

58

goodelle
Text Box

���
 ����
� �
�
 ���� �� ��� ���	���� �
��� �
�
��
� �� �
�� �	� ��
 �
���� ���
����
 ��

��
��������� �������
� ��
� ����	������ �� ��
�
 �
���
�� ��
�
���
� ���
� ���� ��
 ���

�
��� ����
� �	�� ����
��
 �
��	��
� �� �������� �(��
�� �
���� ���
����
� ,����������

��� ��� ���
 ��
��
� ,
����,��� � ���	������ ��������	��	�
 �	��� 	��� ���
�� ��
�
���

����	������ �� �
���� ���
�� ���� ��������	��	�
 ��� �
 	�
� ��� ��	����� ��
 ����� ���

�
��� �� � �
���� �
���� ��� ��� �
 ������
� ��� �������� ���
� �� ����	�� ������

���	�������� � ���
���� ���� ����
���� ���
�
��� ����	������ �� � �
���� �
�����

��
 �	����� �� 6�7
�������� 	��
� ��	��� �� ��
 ���
���
 �� � �
���� �
���� ���
� �� ���

�
��� ����	�������

� ��	�
�� �� ����
	��
�� ���� �����

���� �
����� ������	�
� ��
 ����
�� �� �� ����������� B	
�� ,
��
� %�B,&� �� �B, ��

������� �� ����
�� �� � ��	��
� �
�� %����� 6-7&� �	� ��� ���
 �
�
��� �
������������
�� ��

�B, �� �
��������
 ��� �������� ��� �� ��
 �
���� ���
� �� ��� �
�������� �
���� �� ��

�
����� ���� �����
�
�� ����	�
� ��������� ��
 ����� ��������
� ��� 	�
� �	
��
� ��

��
 �
���� ���
� 	��
� ��� �����
�
��" ���� ���� �������
�� ���	�� ���
 ���� ����	�� ��

�
��� �
�
� �� ��
 ���
�� ��
 �	��
�� ������� �� ��
 ���
�� ��� ��
 ����������
� �� ��

���
�� ��
 �B, ���
����
� ���
�� �� ��
 �
���� ��	���� ���
� �� ���� �	
��
� �
����
�

��� ��� �
���� �� �
 ��	�
� �� ��� +��
�����
� �� ��(��������
� ��	����� ��
 �B, �	��

�������
 � �������
�� �� �	����� �
����� ���
� �� �
�	���� �� �B, �����
� � �
� �� �
����

���
� �� � �
����� ��
 ���� �� ��
 �B, ��
��
�� ��

(
����
 ���
���
 �� ��
 �
���� ��

1

59

goodelle
Text Box

��������� ����� �
���
� �� 	�
� �	
��
� �� �������	�� �
���� ���
� �� � ��
�����
 ��������

����
���� ���� ���� �
�	��
� ����� �� �������
� �� 6'�7� ���
� ��� ��
�� ������ ��
 ��	����

%��

� ���
& �
� ��
�� �
����
� ��
 ��� �
�	��
�� *� ���������
�
��� ����	������ �	��

�
 ������
� ������ ��
 ���
� �� ����� �
�� ����� �� ��
 ���
���
 �� ��
 �
���� �
���� ���

�� ���� ���
� ��
 ������	���� �� �
���
�
�
��� ���� ��

�������
�� 	����� ���
�����
�

����� �
���� ��
 �
������������ ��� �
��� �� �B, �	�� �
 �����
� ���
� �� ��

�
��� �
�
��

�� ��
 ���
� ��
�� �� ��	��� ���� ���	� ����� � �	��
�� �B,�

��� �!!
������ "���� #��	�� �
�����$ %��� �
�������

���� �
����� �
�����
� � ����� �
���� ��� �B, �
�
����� ���� �� ����� ���	�� �� ����	�
� ���

��
�����
� �� �������� �� ���
� ���� ����
� ���� ��
 ��������� ����
�
�� �� ����

�	��
�� �� ���
� ,��
 �
$������� ��
 �
�	��
� ����� �� ��
�
����� ��
 ����������

� C �
� �� �
���� ���
�

���C ����������� �� �

�� C �
���� ���
 �

�%��&� C ���
���
 ��
� �� �
���� ���
 � ��� ��
 �
���� ���
 �

�%��& C ����� ���
���
 ��
� �� �
���� ���
 �

�%�&� C 	���� �� �%��&� ��� ��� �

	
�� ���� C ����
�� ����	�� �
���� ����������
�� �%��&� �%��&� �������

�� C ��
 ���
��
����� ����� �
�
 �� �� � �
��
� �� ��
 ������ ��� ��
��
 ���
����� �� ���

���� �� �%��& ���
��
��� ��� �%��&

=

60

goodelle
Text Box

� �
� �� ����������� �	
�� �
��
�� �� ����
� �	�� ����
��� �� ��
���
� �� �����������

�	
�� �
��
� �� �%��& ���
��
��� ��� ��
 �%��& �� �� ����������� �	
�� �
��
�� ?��
 ����

��
�
 ����������� �	
�� �
��
�� ���� � ������� ���
�
��
�� �
� �� ��
 ���
��
����� �����

��� ;��� ����������� �	
�� �
��
�� ��� ��������� ��
 ���
 ����	� ��
��� �� �
�
 �%��&

���
��
��� ��� �%��&� ��
 ������� ���
�
��
�� �
� %:*,& �� �� �� ����
� �� 	���� �

�������	�
�� ����������	� ��������� ���� �� +��	�
 �� ���� ����� ��������� �� ����
��

�
���
� �� ��
 �������� ��������� ������
� �� 6=7 ���� �� �	�� ���� �� ����
��� ���� ��

��������� �� 6D7� ��
��� ���� ����	�� ��
 ����� ��
 �
� �� ���
�� � � ��� ������ �
�������

��
��
� ���� ��
�� �
�������E ������ �	��
�� �� ����
� ���� ��
 �
������� ������ �� ����

�
�� � � �� ���
� �� ��
 ������� ���
�
��
�� �
� ��� ��
� �	������
� ���� �� ����� ���

��� ���
� ���� ��
 �
������� �� �� +�� ��
 �	����
� �� �������� ��� ��
�� ��
�
��������

���� ��������� �� �
�����
� �� ���
���� ��
������ �� ������" �� ��
 ���	�� ����
�
��������

�� ������ ��
 ����
� ��� ��
 ��������� �� ��
���
� �� � �	�
�� �������	�
� ������

F��
� ���� ��
 �	��
� �
������� �� ��� ������	��� ���
 �
����� ��	��
� �� ��� �����

���� ���� ���
�
�	�
 ��%���%���&� ��� ���%���&& ��
������� 6=7� *� � ������� �
���� �
�����

��
 �	��
� �� �
������� ���	�� �
���� ��	��
� �� ��
 ��)
 �� � �
���� ����
��
�" ��
��

��
 ���
 �
����� �
����� �������� �� ��
 �	��
� �� �
���� ���
� �� ����
��
� ��� ���

���
���
� ��

��
��
� �	����� ���
 ���� ���� ����� ��� ���� ���� �������
� ���� ��

��������� �� �������
 �� ����
 �	��
�� �� ���
��

��
 ��������� �
�	��
� �� ������ ���������)�����" ��� ����	�������� �� �	�
�� �
��
��

�
������� �� ��
 �
������� �� ��
 ����������
��� ���
 ���������� ��� ������ �	��
� ��

9

61

goodelle
Text Box

�G ������
��� �� � ������ �	��
�� > � �%�& � �
'G � C �
-G � C �
.G � C ��

0G ���
 %� �C �& ��
1G � C ��� � � G �%�& � �%�& �
� ���� ����
=G � C � � �
9G � C �� ��8������ %� &
DG � C � � �
�>G � �� �� ��
 ����� ���	�
� �� �
��G
�� ���

�'G �� ���� ������ � ����� ��
 :*,

+��	�
 �G ��
 ����� ��������� ��� �B, �
�
������

��� �
������� %�����
 �� ��� �
��&� ���
� ����� ��
 ���� �����������
������
� �
�

�

���
� �� �� ���������� �� �
� � ���
 �� ����	�
�� �� ��� ����	�
�� �� ��
 ���
�
��
�� �
�"

���� ����������� �� �
�� �� � ���
 ���� �� ��� �
��
�� �
������� ���
 ������ �	��
� ��

��
� ���� ��� ������ �	��
� %���	�� ��������� �� ���� ���
�����
&� ��
 ����������	�

���	�
 �� ��
 ��������� �� ���	�����
� �� +��	�
 '� �
�
 ���
 �
�
� �	�� ��� �� �����������

���� ���
� ��
 ��� $�
 �
���
 ������ ��� �
������ �� ����	���� �� ��
 ���
�
��
�� �
�� !��

���
 �
�
� ��� �
���
� ��� �
������� �� ���������� ��� ����	� �� ��� �
������� �
������� ��

���
 �

� ������ �
��	�
 ��
�� ������ �	��
�� ��
 ��
� ���� ���
 �
�
�E� ������

�	��
��

��
 ���������� �� ��
�
��
�� ���	�
� ����
���� ��� �
�����
 ����	�������� �
�

�

����� �� ���
�� ��

(
�� �� ���� �
����
� �� ��
 ��������� �� �� ������
�
�� 4�����
� �

����	�
 �� ��

������
 �� � ���	
� �
�

� �� ��� �� �	�� ���� �� �
�
��
� �%�&� �	� �� ��
�

D

62

goodelle
Text Box

+��	�
 'G ��
�����
 ��
����� ��� �� �B,
�
������ ��
 ���
����� �� ����������� H� ����
�����	� ���
� ��� �
��
�� �� ���
 �
�
� �� �����

��� �
�
��
 �%�& %	�����
���� ����	��������&� *� �%�& � �%�&� ��
� ���� ���
� ��� ����

�

�������� ����	�� ��
 ���������� ��� ��
 ���
����� ���� ���� �� ��
� ��� �
���
 �� �B,�

��
����
�
��
� �B, ��� �
 ������
�
� ��
Æ��
��� �	� �� ��
 ����	�������� �
�

� ��

�� ���
� �� 	��
�����
 ��
� ���� ��� �
 � �
������
 �
�	��� *� �%�& � �%�&� ��
� �� ���

����

� �������� ��� ����
���� ����	�� ��
 ��������� ��� �� ��� ��� ��� � �
����
 ����

�� ���������� �
��
� �� ��� �� �� �� �B,� *� ��
 �
����
 �� �
�
��
� %���	���� ���� �� ��

������������ �� �
�������&� ��
� �� ����

�� �������� ��� ����
���� ����	�� ��
 ����������

*� ���� �
����
 �� ��� �
�
��
� %���	���� ���� �� �� ����	�������� ���
���� �� ��� �
�������

��� ��
� ��� ��� ���	� ��&� ��
� �� ��� ��� ���
$���
�� ��� � �
����
� ���
� � ���
�	�

�
����� �� ��� ��� �
���� � ���
 ��
� ��� �
�
��
 � �
����
 ��
��
��� ���� � �
������

�
������� ����	���� �� ��
 ���
�
��
�� �
� �	
 ���
 �� ��� �
������� ���
 �

�
�
��
� ��

�>

63

goodelle
Text Box

�� �B,� ��
� ��
�
��� ���
�� �� �� �B, ��� �
�� ��� �
������� ���� ������ ���� ��� �
�	��

�� ��
���� �B,� �	� �� ����	�������� �� 	��
�����
 ��
� ���� ��� �
 � �
������
 �
�	���

��� �
������� &������� �� ��!��	� '������ ���
� �����

��
 ����� ��������� �� ��� ��H	
��
� �� ��
 ���
 ����	�� +��
�����
� �� ����� �
 �
������

�� �����
 ����������� B	
�� ,
��
�� ���� ����
 ���
� ��� ��
 ����
�� ����
�� ���
� *�

���� ���
� ��
 ��	�� �
$�
 �
������� ����
�� ���
 �� �� ���
�
� ����
 �� > �� �� ��
 ����

��������� ��� �
 ����$
� �� �
�
$�
 �%�& C ���� !��� I �� �
�
 � �� ������ �	��
�

�
�

� > ��� �� 3��� ���� ����$������� ��
 ���
� ��� ��
 ����
�� �
������� ����
��

���
 ��� ����� �

�
��
�� �	� ��
� ��� �
 ����
� ��������� ��
 ����	�������� ����
���

��
 	������
�� ���� �
�����	
 ��� �

�����
� �� ����	�
 ��� �	������ �� �
���
� ���

�������
�������� /
���
� ��� �� 6.7 ���� ���� ��

��
��
� �	����� ���
 �� ���� ���������

�
����� ��%���%���&� ��� ���%���&&�

��
 ��������� ��� ���� �

��
��
� �� ��(
�
�� ���
� �� ���
��
����� ������ �
���� ��

�����
 ����� ����
������� ������ +��
�����
� ��
 ��� ��� �� �
�
�� �� :*, ���
� �� ��

�
���� ����
 ����
� ���� ��
 ����� ����
� *� ���� ���
� ��
 ���
��
����� ����� 	��� ����

��
 :*, �� ����
� �� ��(
�
��� �	� ��
 ��������� �
����� ��
 ���
� *� ��
 �
���� ����
 ��

�
�� ���� ��
�	�� �� ��
 ����� ����
� ��
� ��
 �
�	��
� ����� ����	�������� �� ����� ���� �

�����
 ���� *� ��
 �
���� ����
 �� ��
��
� ���� ��
 ����� ����
� ��
� ��
 ����	�������� ��

�� ����
� � �����
 ���� �	� ��
 ��������� �� 	������
��

��

64

goodelle
Text Box

� ����
�� �� �!��� !
�� ����

���� �
����� ������
�� ��
 ��
������ �� ��
 �
���� ��������
�
����� �� �B,�� ��
� �	
��
�

��
 �
�� �� �
�
���� �B,� ��� �� �� ��
 �
������������ �� �� �B, �� ������ ����� �
���
� ��

����
 �	
��
� �� ���
� ����� ��� �
������������� �� ���������� ���� ����� �� �B, �	��

�������� � �
���� �� ��
 ����	� �� ���
� ����� ��� ��
� �� �
������������� ���� ����	�

����	�
� ��
 �
������� ����
�� ��
� �� ��
 ���
� ��
 �	��
�� ����
 �� ��
 ���
 %���
�

���

�� ��� �
��&� ��
 �
���� ���������� �� ��
 ���
�� ��� ��
 �	��
�� ����� ������
� �� ��

���
� ���� �
�	��
� ���
� �� �
���������� ������ �
��������� �B,� �� ��
�� ����
�� ����	��

��
 �
�����
� �� ���� �
����� �
�����
� �� �� �B, 	�
� ����	� ����������� �� ������ �����

�� ���
� ����� ��� �
���� �� �
�������������

(��)������������ �* '��!����+�
���

�� �B, �� �
��������
 ��� ��
 �������� ��
� ��������
� ��� ��
 �
����� �� ��� �� ��� �
����

������ ���
�� ?��
 ���� � ���
 ��	�� ���
 ���
 ���� ��
 �
��������� �B," �� ���� ���
�

�� *� ��������� � �	
�� ��	�� �
 �
�� �� � �
���� ���� ��� �	�����
 �B,�" ��
�� ��
 ��
� ��

�	
�����
��
��� �
���� ��
 �
���� ��������
� ��� � �����
 �B,� :
����� ��� ���������

����� �	�� ���
 ���� �� ��
�
 ��
�������� ���	������ ���� ����	�� �� ����� ��
�������� �

���
�

��
 ����� �����
� �� ���� ��
 ���
 ��	�� �
 ������
� ����� �� �� ��(
�
�� �B,�

���	����
�	���" �� ���� �������
��� �
���
� �B, ���� ��
 ���
� �� ������ �� �������
��

���� ��
�
���
� ��
� ��� ��
����� ���� ���
� �� �
����
 ���� �����
� ����	�
��
����

�'

65

goodelle
Text Box

������������ �
�

� �B,�� � ���
 ����$
�
��� �
��������� �B, �
�
�
� �� �� ������
�

� ���� %���� ��� �
 ����������
� ��� ���������&� ;��� �
��������� �B, ��
� ���� ����

�
����
� *� � ���
 �
�
��
� � �
���� ���� �������
�� ���� ��� �B, �
���
 �� �
�
��
� �� ���

���� ���� �B,� ��
� �� ���	�
� ��
 �������
�� �� ���
 ����	� ������
���� ��� �	��
��

���� ��� �� �
8
��� ��
 �������
��� ��
 �B, �	�� ��
� �
���
 �� �
�Æ�� ��
 �������
��

�� $�� � �	�����	�
� ���� �
���� �� ���H��� �
���	���� ����� ��� ��	����� ���H���� �� �

�����
� ���
 ����� �
�	����� ���� �
��
�� �
������ ����	���������

(�� ������ �Æ���� ��� ,��� ����������

�� ���
� �
���
� ��
 ���� �
��

 �� �
�	����� ���
� ���� �� � �
��	�
 �� ��
�
 �
�����

����� ��� ���� � �	��
� �� ���
� �� � ���
� �
���� �� �
 ����
� �� �
����
 ��� �������	��

�	
��� 3�
� ��� ����
�� � ���
 �	��
��
� � �����
� ����
 �� ����
��

�
���" �� �

(
����
 ���� ��

� ����
 �
�	��
� ���� ��
 ����� ���
����
 �
 ��
�
� ��� 6'�7� *� ����

���
� ��
 �B, ��	�� �
�
����
 ��
 ��

� �
���� ��� ��
� ��� ��� ��
 ���
 �� ��
� 	�

�
���
 �
�������� ��� ���� ��
�
��� � ��Æ�	��� �� ����� �����
 ��� ���� ���
E� �
��	��
� ��

�
�	��
� �
���
 �� �� ���
 ������ � �����
� ��
	� ������ ������� �� � ���
�� ��� �

������
� �� � ���
 ���� ����� ��� ��
 ���
 �� �
 ��
� 	� �� �
����" ���� ��
	� �����

����� ��� �����
� �� ���� ����������� �� �
 �
��� ��� �	������ �� ���
�� �� ��
 ��
 ���
 	�

6�D7� ���� ��
	� ����� ��� �����$������ ������
 �
��������
 ��� ��� 	�
 �� ���	�
� �� ��

���	�������" �� �� ���� ��
�
�� �
�	��
� ��� ����
� �	��������� �� ��
�
 ����������� ?��
�

����������� �
�

� �
�
��� ����
� �� ���� �� +��	�
 -� ��
 ������
�� ����
 �� �
�
 ��

�-

66

goodelle
Polygon

+��	�
 -G ����������� �
�

� ����
� �� � ���
�

�
���� ���
����
 �� ��
�������� ��� ��
 ���
 ��� �
�� �� �
�
��
 ����� ��
 ������ ����

��� ���
��� �

� �
�����
�� � ���

��
�� ��
 ���	���� �� ������� ����
� �� �
�� �� �
�
��

����� ��� �
�	��� ���
����
�� �� ��
 ����� ����
� ��

��
 ����
 �� �
���
� �
� ��

����
�� �� ��
 ���
 �� �����
�
�� �����
� �	�� ��� �� ������ �	������ ������
�

�� �B, ��� 	�
 �� ��������
� �� ����
�� � 	�
� �
�
� �	
�� ���� ���� �������
���

��� ���
�� � ���������� ��������� �������� �� ������
� �
�
����� � �	
�� �� ��
 �B,� ���

���������� ��� ���
� �� ��� ����
 �� �
���
�
 ��
 ����������� �
�	��
� �� ��
 �	
��� ��������

* �
�	��
� �
�����
�� �����
 ����������� �� �
 ��������
� �� ��
 �B,� ��� �� ���
 �
��
 ��

� ��	�
 ����
 �������� �� �������� ��
 �
���� ��������� �������� ��� �� �������
� �� ��

���� ���� ���
� �

� �� �
 �
�� ���

� �� ���� �� �������
 �� ����
�
 �
������	�
�
���

�������� ��
�
���
� �������� ** ���
� �� �
�
�� � �
� �� ����������
 ���
� �� ���� �� ������

���� ����	�� ��
 �
������� ����
�� ���
 ��
��� ���
� �	��
� �� �����
 ����� �� � ���
� ���

��
 �
���������� �
���� �� ��
 �	
��� ��� ���
� ���
� �� ��
 �
���� �� ��
 �B, ��
 ����
�

�.

67

goodelle
Oval

�� ���������� �� ��
 ���

� ����
�

����� ��� �	
� ��

*� �������� **� �� �B, ����� � ���
 ��� �� �	��������� ��� �
���� ���� � �
�����	���

����� ��
 �	����
 �� ���� ��� �� �� �
��
�
�� �
���� ���
���
 �� �����	� ���
� �� ��
 �B,E�

�
����� ��
�
���
� ��
 ��)
 �� ��
 ���� ��� �	�� �
 �	�� ���� �� ����	�
� ��
 �
���� ���
���

�� ��� ��
 ���
� ���� ��� ��
 �� ��� �
���� �� �
�������������

+��	�
 .G /
��
�
������� �� � ���� ��� �� �� �B,�

� �
�� �� ��
 ���� ��� �� �����
� �� �
���
 ��
 �
�����
 �������� �� � ���
 ���� ��

�B,� 4
��� ���	�� ���� ������	��� �
�� ��
 �����
� ��� ��
 ���
 ����� �� �������
 ��

�
���� ���
���
 �� ���� ���
� ;�
��	����� �
� �	�� � ��� ��� �

� ������	��
�� � �����
�

�
�� �� ��
 ���� ��� �
��
�
��� ��
 ��
�
��
 �� �
���� ���
���
 �� ���� ��������� ���

�0

68

goodelle
Oval

�� 	�������
� �
�� �
���
� ��
 ���
��
 �� �
���� ���
���
� ,	�� � ���� ��� �� ���� ��

+��	�
 .� ��
 �
��
� �� ���� ��� �� ���� �
�����
 �� ��
 �������� �� ��
 �B,� ��
 �����

�
���� ����
������ �� �
���� ���
���
 ������
� �� ��
 �B, ���
��� !��
� ����
� �
�����

����
����� �� ���
� ���	�� ��
 �B, ����� ��� �
����� ��� 	������
� ������ ����
�����

�� 	����
�
� ��
�� ��
 �������
�� �� ����� �� ���
� �� � �� ��
� ����
��� ��
 $��� ��
�

�������� �� ������	����� ��
 ���� ��� �� �
�
����� ���
� ���� ������� ���
 $��
�� ����
����

��
 �
���� ��
� �������� �� ���	���� ��������� ����� �� � �	��
� �� ��
 ���
� ���� ��

�	��
���� �� ��
 ���� ����

(�� ����������� �* ��� -��� .�!

�� ��� ���
� �	���� ��� ��
������� ��
 �B, ��������� � �
� " ���� �� � �	��
� �� ��� ��

���
� �� ��� �
����� ���� �
�
��
������� �������� ����
 ���
� ���� ��	 �
 	�
� �� �
����
 �

�	
�� ���� �� �
�� �� ��� �
����� ��
 ���
� �� " ��
 ����
� �� ��
 ���� ��� ��� ��
 �
����

���
���
 ��������
� ��� ��
� �� 	�
� �� ����� ��
 ���
�� �� ��
 ���� ����

���
 ����	����� �� ��
 �
� " �� ����
�� ��
 �������� ���
�����	�
 �� �
$�
�� 2
$�

�
� # C ���$ �� % % % ��� �� �
 ��� ��
 ����� ���
� �� ��
 �
���� �� ��
 �B,� +	���
�� �
$�

�%��& �� �
 ��
 �	��
��
�
��� �
�
� �� ���
 �� � # � +������� �
$�
 ������ �� ��
 �
�	������

���
�� ��
� ��
 ���	
 �� ��
 �
���� ���
���
 ��
���� �
�

� �� ���
� �� ���� ��
� ��

������
�
� �� �
 �
�	����� ��� �
��
�� ��
��� ���
��

��
 �
�
����� �� " �� �
�����
� 	���� ��
 ��������� ���
� �� +��	�
 0� ��
 ��
������ ��

��
 ��������� ��� �

������
� �� ������� *� ��
�� - ��� .� � ���
 ���� ��
� ��� ���
 ���

�1

69

goodelle
Oval

���
���
 ��
���� ��� ��� ���
 �	��
���� �� ��
 ���� ��� �� ���
� �� �
� "� *� � ���
 ��

��
� ���
 �� ��
���� ��� � ���
 �� � "� �� ���
� ��� ���	�� *� ��
 ��
���� �� �� ��� ��

��

�� ��
 ���	
 �� ��
 �
�	������ ���
� ������� ��
� ��
 ���
 ��� ��
 ��
��
�
�
��� �
�
�

�� �
�
��
� �� " ��� ��
 ���
� ���
 �� �
���
� ���� " %��
�� 9� D ��� �>&� ���
������
���

�� ��
 �� ���
� ��
 ��� �
�	����� ���� ��
 ���
� �� " %��
� �-&� �� �	�����)
� � ���

�� ���
� �� �
� " 	��
� - ����������� %�& �� �� ��� �� ��
���� ��� ��� ���
 �	��
���� ��

��
 ���� ���� %�& �� �� �� �
�	����� ��� � ���
 �� ��
 ���� ��� ��� � ��
�
�
��� �
�
�

���� ���
��� ��� %�& �� ��� ���
���
 ��
����� �	� �� ��� �
�	����� ��� ��� ���
 �� ��
 ����

���� ��
 ���� ��������� 	��
� ���� � ���
 �� �
���
� ���� ��
 ���� ��� �� �
� �� ��

�
�	����� ��� �����
� ���
 ��� � ��
��
�
�
��� �
�
��

�G " C �
'G ��� ��� �� � # ��
-G �� %�%��&� 	 �%��&�& C �
 �� � " ��
� ��
.G " C " � ��
0G
��

1G ��� ��� �� � " G �%��&� 	 �%��&�& �C � ��
=G �� %�%��&� 	 �%��&�& � ������ ��
� ��
9G �� �%��& � �%��& ��
� ��
DG " C " � ��
�>G " C " � ��
��G
�� ��
�'G
��

�-G " C " � ��
�.G
�� ��
�0G
�� ��
�1G
�� ��
�=G
�� ��

+��	�
 0G ��������� ��� ������	����� ��
 ���� ����

�=

70

goodelle
Oval

����� ��
�� ��� �	
� �� �� ���
�� ����

+������� ��
 ������	����� �� ��
 ���� ���� �� �B, ���
���� �� ������ ����� �� ��
 ���
�

�� ��
 ���� ��� %�
� "& �� 	���� ��
 ��������� �
�����
� �� +��	�
 1� #���� �� � ����	�����

�� ���� ������� ��������� ���
 ���������� �
��������� �� ������	�
�� 2
$�
 � �� �
 ��

�
� �� ��� ��
 �	��
���� ����� ���
� ���� ��
 �
��� ����
�� ��� � �� �
 ��
 �
� �� ��� ��

������ ���
�� ��
�
���
� # C � � �� & �� ��
 �
� �� �	��
���� �����
 �	
��
� �� �� �B,�

;��� �	
�� ' � & �� ������)
� �� ��
 �������� �	��
G �'��$ ���$ �� % % % �	�� �
�
 '�� �� ��

�	
�� ��
���$
� ��� ��$ �� % % % �	 ��
 ��
 ���
� ���� ��
 �
��� ����
� �� ���� �	
���

*� �� ���
��
� ���� ���� �	
��
� �
�� �� �� �B, �� ��
 �
���� ��� �
�	��
 ��
 �B,

�� ���� ���� � ������� �� ��
 �
���� �� ���
��� ��
�
���
� ��� ��� ���
� �� �
� " �

� �� �

�� ��
 ����� ����
� !��� � �	��
� �� ��
 ���
� �� "� ��
�� � �

� �� �
 ����� �� � ���
�

���
 �� ���	���� �
����
 ����
 �	
��
�� ��
 �
�����
� �� ��
 ���
� ��
 �� ��
 ������ ����
�

��
� �� ��
 ��������� �� +��	�
 1 �
�����
� ��
 ������������ �� ���
� �� # ���� �
�� � ���

��

��
 ��������� ��
� �� ���� ��������� �� ��
 �
���� ��� ��
 �
�
����� �� ��
 �	
�� �	��

��� � �	
�� ' �� ��
� 0� ���� �� ���
 �� ����	������ ��
 ���
��
����� �� ��
 �
���������� ��
�

��
��$
� �� ��
 �	
�� ��� ��
 ����
�������� ��
� �� ��
 ���� ���� ��� ���
� ���
 �
����

���
���
 ��
� ����� ���� �
���� ��
 ���
� �� ��
 �	��
� *� ��
� D� ��
 �B, ����	���
� �� �

���
 �� " �

�� �� �
 ����� ��� ��� �� ��
�
 �	
��
�� ��� �	�� ���
� ��
 ���
� �� ��
 �
�

�� !��
 ��
 ������	����� �� ��
�
 �
�� �� �����
�
� ���
� �� � ��
 �
�� ��
	� �
����
�

��� ���� �������
��� �
�
�� ��
 ���
� �� � ��
 �
�� �
����
� ����
����
 ��
� ��
��
�

�9

71

goodelle
Oval

�G � C �
'G � C �
-G ���
��� ' � &
.G ' C �'��$ ����
0G �
�
�� ���$ �� % % % �	� �� " ���� ��� �
����
 '
1G ' C �'��$ ���$ �� % % % �	��
=G
�� ���
9G ���
��� ���
 �� � "
DG �� � ' � & G ' �� �
����
� �� ��� ��� �� �� �
�>G � C � � ��
��G
�� ���
�'G � C # � �

+��	�
 1G ��������� ��� ��������� ����� �� ���
� �� ��
 ���� ����

��
 ������ ����
�

��	�
 ���
� �� � �
���� ��
�� ����
�� �
�
� �� ��
 �B, �
����������� ��
 ���� ���

�	�� �
 �
���� �� �
H
�� ��
�
 	����
� ���	
�� ;��� ���
 ��
 ���� ��� �� �
����� �
��

" ��� � ��
 �
�����	���
� ��� �
 ���
� ���
 ��
� ��

������� �	
��
�� �� 	��
������

��

(
�� �� �
������	����� ���� ���� ���� ������
� ��
 �������� ��
������ ���
�� 	����
�

��
 �
�
��
� �
�� ���
� ���� ���
� ���� ��
 ���
 ��� ��
 �
���� ��� �
������ ��
 ����

��� �� ������ *� ���� ���	������ ���
� ��
 �	����� �����
� �
�

� ��
 ���
 ��� ���

�

����
 �� ��
 ���� ���� ���� �
��� �� � ���	����� �
�
 ��
 �
� "� ��� ��
�
���
 ��
 �
�

� ��
 �
�����	���
� ��� �������� !� ��
 ���
� ����� �� ��
 ����
�� 	����
� ��
 �
�
��
�

�� ��
�� ����
� ���
����� ��� ��
 ���� ��� �
��� �
����� ��
 ����������
�� ����
� �
��

" ��� � �
���� ������ �������� ��� ���� �
����� �� ���
� ���� ��� �
�� �� ��

��
����

�
��� ����	������ �� ��
 ���
� �� �� ��
�
���
� ��
 ��
�	
��� �� ��
�
 	����
� ��� ��

�D

72

goodelle
Oval

��
�	
��� �� �
������	����� ��
 ���� ��� ���	�� �
 ����
�	
�� �
� ��
 �������� �� ��

�
���� �� ��� ��� ���
��� ����
� ��� ���
 �����
 �
����� �� ��
 �
�����

(�("��
��� �* #����� ��	����� *�� ���� "������

3���

��
����� ��
 ���
 �� ��
 �
���� �� ����
����� ��� �� �� ��������� ��8
����
 �� ��
�

������� ���
��� �� �� ���� �
�
����� ��
��	�
 ���� ��
�	��
 �
���� ���
���
 �� ����
�
�

��� ��� �	
��
��
��	�
 ��
�
 ��
 �� ���� �# � ���
� ���� ��� �
 ����
� �� ��
 �B,�

 ������ ����
�
 ���
���
 ��
��
� ���� �	�� �
 ����
�
� �� ���������� ��� ����
 ���
�

���	����
�	���� �� ������� �
�
����
 �
��
�
 ��� ����
�
 ��
 �	����� �� ���
���

�	����
�� �� �	����� �� ��� ���
��

%�& ��
 $��� �� ��
 ����
��� 	�
� �� �
�
����
 ��
 ���	
 �� ��
 �
�	������ ���
� �������

*� �� �����	� ���� �� � ���
E� �
���� ���
���
 ��� �� ��
���� ��� ��� ���
� �� ���
 ��

� ��
� �� �	�� �
 ����	�
� �� "� ����� � ���
 �� ��� �
 �
����
� �� ��
 ���� ��� ��

���
 �� �� �� ��� �� ��
 �����
� �� ��
 ���
 ��������� ��� �%��& � �%��&� �� ����
��

�
��	��
�� ��
 �
��������� ���� ��
 ���
� �

������ ��������
� ��� �
 �
���
�" ���
�����

�� ���
� ��� �
 �
$�
� �� �
 �
����
���
 ���
��� ���
� �� ��
 ���
���
 �� ��
 ��
�����

���� �� ��
 ���
� �� 9>J� ���� �
��
����
� ��
�� ��
 �
�	������ ���
� %��&� �� ����
� ��

���	������
��
���
���� ��
 ������� �� ���� �������� �� ���� ��
 �	
��
� ��
� ��� ��

���	�� ����
� ��
� ��� ��(
� �� �� ���	
� ��
 	�
� ��� ��
 ��� ���� �
	������ ��
�
��

������
� � �
��� �� ����
�(�
���� ���
 ��� ��
 �	����� �� ���
���
� *� ��� ���� �

�����
� �� ����
��
 ��
 ���
 �� ��
 �
���� ��� �
����� �
� �	
��
� ���
 �
�����
�� ����

'>

73

goodelle
Oval

�������� ��	����� �
�	��
�
���� �� �
� ���������� ��
 �
���� ���
 �� ���
 ��������� ����

����������� ���� $�
���� ��� �	
��
��

%�& ��
 �
���� ������ ���� ��� �
����� �� �
���� ���
���
 �� �� ���
� ��
 ���
�

�� ��
 �	
�� �	��
� �� ��
� 0 �� +��	�
 1� ���� �
���� ������
� ���
��
����� ��
 ��
�

�
$�
� �� ��
 �	
�� ��� ��
 ����
�������� �
���� �� ��
 ���� ��� ��� �
�
����� ���
�

���� ��
 �� ��
 ���
��
������ ��
 ����
 �� ��
 �	
�� ��� ��
 ������������� �� � �
����E�

���
���
 �� ��
 ���� ��� �	�� ���	���
�� �
��
�
�� ��
 �
���� �� ��
 �	
�� ��� ��
 ���	��

�
���� ���
���
 �
��
����
��� +�� ���� ����
�
������� � �����
 �
�����	��� �
��
�
�������

�� ����
� ��� ���� ��
 �	
��
� ��� ��
 �
���� ���
���
� ���� ������$
� ��
 ����	������ �� ��

���
��
������ ��
�
 �
��
�
�������� ��� �

��
��
� �� �
��
� ��������������� ?��
 ����

��� �	
��
� ���� ��
 ������ �	�����
 �B,�� ��
 �	� �� �	
��
� ��
�� �� ����
 �B,� ������
�

��
 ����� ���
���
�

?��
 ���� ���
 ������������
 ������ ����
����� ���������� ��� �
�	��
 ��
 	�
 �� ��
��

������� �
���� ���
 ���
���
 ��
��" ��
 �
����� ��� �������� " ��� ������ ���
� �� �	
��

�	��
� ��� �
 ����$
� �� ����
�� ���� �
�	��
�
���

" �
#����
�� �$��
#���

/�� #���
����� ����
�

,��	������ ���
�� ���
� �� ��
 ����
 ����������
�
 ������	��
� 	���� !��
� :��
�
�

�1�> 6�-7� � $���
 ����
 ������
 �� 	�
� �� �
��
�
�� ��
 �	������ �� � ���
 �� ��
 �
�����

'�

74

goodelle
Oval

���� $���
 ����
 ������
 ��� �� �������� ������ ��
 $��� ���� �������� ����� ��� ��

�
����� �� �B,� 	���� ��
 :������ *��
�
��
�� ,
� ���������� ��
 �
���� ���� �� ���
�

�� ��
 ���������� ������� ���� �� +��	�
 -" ���� ���� �������� ����� ��� ���
� �� �
�����

�
����� ������ ��������A�
�
��
 ����
��� �� ��

� 	���� ��
� 	�� ��
 �
���� ���

�
���

����	������ ���
�� ��
 ���
� �� ��
 ��� �� ,�
�� ��� @��) 6'�7� ��� ,��������� � �!�

6�97� �� ��
 ����� �� ��
 ���	������
��� ���
 �
���� ��� � $�
�
�
��� �	��� �� �

<�	�
� ��

�
��� �
��
�
� �� ��
 �����	� ����
� ����	�
� ��������� �� ��
 �������� ������

%������ � ����� � ������� � ���	����& %> G � G ��>-. G ��0-�&� 2
$�
 (
� �� �
 ��
 ���
���
 ��

�� ����� ���
 ���� ��
� ���
����
 �� ��� �
����� �� ����	�������� ����" ���� ���	
 ��

����	���
� �� �
 ��
 ���� ;��� ���	������ �� �	� ��� ��

��

����������
�
��� �� ����	�
� �� � ���
 �� �� ��
����
� �� �
����� �����" ����
����

�
��� �� ���
�
� �� � ���
���� ����
����� �	������ �� ��
 �	��
� �� �	��
���� �����
 ������

� ���
 �� ���	�
� �� ���
 �
���
� ��

��
 ����
 �
� ��E�
�
��� ����� �
�� �>J ��

��
 ��������� ?��
� ��

�	���
� ��� � ����� ���������
�A�
�
��
� ���	�
 �	�������� �

�������
 �� '�. @��� ��
� � '0� ����
� ;��� ���
 ���� ��� � �
����� �
���� ������
 ��

�
�
����� �������� ����� � ����	� �� �>��

/�� #���
����� #�������

��
 �������� �� ��
������
�
 ������	��
� ��
���	��
 �
��������
 ����
��� �
��������

��
�
����
(
����
 ���
���
� ��� �
���� ���
���
� � ��
����� ��� � �
� �� �����
�
�� ����

�
$�
 ��
 �	����
 �� ��
 �
����� ��
 ��������� �
�
 ���
� ��
 ����
�� ��� ��
 �	
��
�

''

75

goodelle
Oval

���
� �� ��
 �
�����

����� ��� ����	
��

*� ,�
����� *� � �
� �� �
���� ���
� �� ����
� �� � �
�����	��� �
���� ��� ��
 �	����
 ��

��������� ���	������� ���
�
�� �� 	�
�� ����
����� ��
 �
����� *� ���� ��
������ 	�
�� ���

����	�� ��
 �
���� ����� � �������� ���
 �� � �������� ��

�� ��
 	�
� �
�
���
� �	
��
�

��� ��
 ��
� ���
����
�� �	���	����� ��� �� �
� �	�� ���� ��
 ��
� ���	�� ��
 �
���� ��

����� ����
� �� �
�	�� ����������� ���	� ��

�������
��� ��
 ���
� ��
 ����
� �� � '�2

�
������� �
�� ���	��	�
 �	�� ���� ���
�����
 �
�������� �� ��������" ���� ���$�	������ ��

������� ��� ���� ��
������

*� ,�
����� **� ��
 �
���� �
���� ��
�����
� �� �
�
�� ����	����� ������ � $�
� �
���
�

�
�� ��
 �
���� �
���� �� ����� ����
� ��� ��
 �
������������ �� �
�
����� ����	�����

������ ��
 �
���
�
�� *� ���� ���
� ��
 ���
� ��

�
��� �������	�
� ����� ��
 �
���
�
� ��

�� ������� ������� �� ���� �� +��	�
 =� ,�
����� ** ��(
�� ���� ��
����� * �� ��
 ���	�

��� ���	�
 �� �	
��
�" �� ���
���� �� ���� ��
 �
���� ��� ����
� ������	�	��� ��
������

�	
��
� �� $�
� ����������

/�� .����� *�� ������ ����� ��� "��
��� �* ��	�����

+�� ���� ��
������� ���	�������
�
 �
�����
� 	���� �������� * ��� �������� **� ��

	��
������ ��
 ����
��� ��
�
��� ����	������ ��� ��
�
 ��������
�� ��
 �������� ����������

�
 �
$�
� ��� ����
��
��

'-

76

goodelle
Oval

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200
Scenario II: Node positions and coverage

+��	�
 =G � �����
 �
��
�
��� ��
 ���
���
 ����	� �� � �
����� ��
 �
������
� �
��
�
�� ��

��	� �	
��
� ����� ��
 ���
� �� ��
 �
���
�
�

���	
� � ������� �	���� ����� �� ��� ��� 	�
�� �	 ��� 	������� ���� �
��	�
 �� � �����

���
����� �� ��
 �����
�
��� ����
�� �� ��
 �
���� �� � ���
� ���
� 3�
� �����
� �������

���
 �� ���
� �� ���������� �� ��
 ���
���
 �� ��
 �
�����

���	
� � ��	���� �	���� �� ��� ��� 	�
�� �	 ��� 	������� !�
 �� ��
 ���
���� �� �	�

������� ��������� �� �� ������
 ��
� ����	������ ������ ��� ���
�� ��
 �����	�
�
���

���	
 �������
� ��
�� ���� ��8
����
 �� ����
�
��

���	
� � ����� �	���� ��	����
 �	 ��� ������ ���	���� �	
 ������� ������ ��� ���� 	�
��

��
 ��
��	� �� ��
�
 ���	
� ������
� ������� ���� ��
 ���
� �� ��
������ �� �������	��

���
��

'.

77

goodelle
Oval

���	
� � ������� ���� ���	� � �	� 	�
� �	 ������	� � 	�� �!"� �� ��
 �
���� ��)

����
��
�� ��
 ����������� ��� �	����� ���
 �� ���� ��������� �� �
��
� �� ����	������ ��

�	�� ���
 �� ��
�� �� �������� � �
 �B,�

����� ���
��
����� ��
 ���
���
 �� ��
 �
����� �� �� ��������� ��
��	�
 ���� ��
 �
����

�� �
���
���� �� ��� ��
���� ��8
����
� ��
� ���� �
���� ���
���
 ����	���	� ��
 ���
���
 ��

��
 �
����� �� �
��	�
� ��
 �
$�
� �� ��	�
 ��
 �	��
�� ���
���
 �� ��
 �
�����

���	
� � # �� �	������
 ���� �	 ��� �����	� ���� �
���� �� �
$�
� �� ��
 �
��
����
 ��

��
� ��
� ��

����
 �
���� ��� ���
�
� �� ��� �
���� �� � ���
� ���
�

���	
� � ���� �� ����� ��� $��� ����� ������� +�� ,�
����� **� �� �����	� �	����� �
��

�	�
 �� �� ���� ��
 ���
����� �� ��
 �
���
�
� �
��� �
��
� �� ��������
�� 3�
�
��	��

���
� ���
 ��
� �� �� ��
����
 ��
����� �� ����� ��
 �
���
�
� ����	� �
�
������ � ��
���

���	�� ��� ��
 �
���� �
����
(
����
�� ������

/�('���
��$ #������ �

����� ����	
����� �
�� ������ !��� "���
�#

����
� � ��� ' ���� ��
 �����
�
�� ���� �
$�
 ���	������ �
�� K� ��� K' �
��
����
��� *�

,
� K�� ��(
�
�� �	��
�� �� ���
� ��
 ����
� �� � �
�	��� '�2 �
������� ���� ���	��	�
�

��
�
 ���
� ��
 ����
� �	�� ���� ��
 ���
 �
����� �� ��
 ���
�����
 �
�������� �� ���������

*� ��������� �� ,
� K' ��(
�
�� �	��
�� �� ���
� ��
 ����
� �������� �� � �
�����	���

��
��
��	�
 ���
� ��
 ����
� �������� ��� ,
� K'� ��
 ���
 �
����� �� �
$�
� �� ��

'0

78

goodelle
Oval

����� �� ��
 �	��
� �� ���
� ��� ��
 ����� ��
� �� ���� ��
�
 ���
� ��
 ����
�� +��
���

,��	������ *2 �� � �
�� ���	������� ��
 ����	��
� 	���� �������� * ��� �������� **� ��

������
�
����
� �� ,
����� .� �������� * �� ��
 ���������� ������� �������� ���� �� 	�
� ��

�
������� ��
 �������	�
� ������� ��������� ��
�� �������� **�

����
 �G ,
� K� %,�
����� *� ������� ?��
 "
������ $
������� ?��
 #���
�
���&

,�� *2 K �� ?��
� �� ��
�

42L�>> �>> >�D> �>>� � �>>�
42L'01 '01 >�D> �1>� � �0>�
42L.>> .>> >�D> '>>� � �90�
42LD>> D>> >�D> ->>� � '=0�

����
 'G ,
� K' %,�
����� *� ������� ?��
 "
������ %����� ?��
 #���
�
���&

,�� *2 K �� ?��
� �� ��
�

42/�>> �>> >�D> �>>� � �>>�
42/'01 '01 >�D> �1>� � �0>�
42/.>> .>> >�D> '>>� � �90�
42/D>> D>> >�D> ->>� � '=0�

/
�	��� ��� :
���� � %��
���

�
���& ��� :
���� ' %�����	�
�
���& ��
 ���� ��

+��	�
 9%�& ��� +��	�
 9%�& �
��
����
��� ��
 �
����� ��
 �����
� �� ������" ��
 ���

���
� �� ��	�� ��� ��
 ��
���
A�����	�
�
��� �� ���� �� 0>J �� ��
 �������� �� �����
� ��

��
 M ���� ��� ��
 ,��	������ *2 ���� �� �����
� �� ��
 N ����� +��� +��	�
 9%�& �� ���

�
 �

� ���� �������� ** ���� � ����
� ������
�
�� ��
� �������� * ��
��
����� ��

���
���
 �� ��
 �
����� ,��������� ��
 �����	�
�
��� ���� ���� �� +��	�
 9%�& �������
�

'1

79

goodelle
Oval

10

20

30

40

50

60

70

80

90

100

T
im

e
 a

t
w

h
ic

h
 a

v
e

ra
g

e
 e

n
e

rg
y
 f
a

lls
 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

CDH100/100 nodes CDH256/256 nodes CDH400/400 nodes CDH900/900 nodes
CDR100/100 nodes CDR256/256 nodes CDR400/400 nodes CDR900/900 nodes

Simulation ID/# of nodes

Set #1 − Approach I
Set #1 − Approach II
Set #2 − Approach I
Set #2 − Approach II

5

10

15

20

25

30

35

40

45

T
im

e
 a

t
w

h
ic

h
 m

in
im

u
m

 e
n

e
rg

y
 f
a

lls
 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

CDH100/100 nodes CDH256/256 nodes CDH400/400 nodes CDH900/900 nodes

CDR100/100 nodes CDR256/256 nodes CDR400/400 nodes CDR900/900 nodes
Simulation ID/# of nodes

Set #1 − Approach I
Set #1 − Approach II
Set #2 − Approach I
Set #2 − Approach II

%�& %�&

+��	�
 9G %�&G ���
 ���
� ��� ��
 ��
���

�
��� �� ��� ���
� �� ���� �� 0>J �� ��E� ��������
���	
� %�&G ���
 ���
� ��� ��
 �����	�
�
��� �� ��� ��
 ���
� �� ���� �� 0>J �� ��E�
�������� ���	
�

'=

80

goodelle
Oval

��

��
�� �� ���� ����
�� �� ������� ���
 �� ��
 �
���� �� ����
��
�� ���� �� ���� ����

�� ������
 ��� �������� ** ��
� �������� *�

+��� ��
�
 $�	�
� �� �� ���
��
� ���� � ���������� �� ,
� K� ��� ,
� K' ��� �
��
��

�� :
���� � �������
� �
�� ������� �
�	���� L�
�
�� ��
 �
������� ����
�
�� %,
� K�&

��
��� �
��
� �
�	��� ��
 ������
� :
���� '� ���� �
��� �� ��
 �����	���� ���� �
�
�� ��

��
���

�
��� �� ����
�� 	��(
��
� �� ��
 ������ ����
�
�� %�� �����
� �� ��
 �
�������

����
�
��&� ��

(
�� �� ��
 �����	�
�
��� �� ���������� ������
� ?������������� ����

���
�������� ���
��
 ���� ��
 �����	�
�
��� ��������� ��� ��
 ������ ����
�
�� ��
�

��� ��� �
�� �
$�
� ��
��� ���� ��� �
 �	
 �� ��
�� �� ��
 �
���� ���� ��
 ���
�
�

���� �� � �����
 ���
� *� ���� ���
 �� ����
�
��
����
�� ���
�
��� �� �
��
�
� �������� *�

��������� �� �� �� ��� ����
� �� ���
� ��
 �����	�
�
��� ��������� ��� ���	���� ������
 ��

��� �
 �

� ���� +��	�
 9%�&� ��
�
���
� �� ��� ��� �
 �������
 �� ��
�	��
�� ��
���� ��

�����	�
�
��� ���	
 ��� ��(
�
�� ������ ���
 ����
�
���� ���� � ���
����� �������

��� � ������ ����
�
�� �
��	�
 ��
 �����	�
�
��� ���	
 �
��
�
��� ��
 $��� ����	�
 ��

��
 �
�����

����� ����	
����� �
�� &	#
�� !��� "���
�#

����
� - ��� . ���� ��
 �����
�
�� ���� �
$�
 ���	������ �
�� K- ��� K. �
��
����
���

*� ,
� K-� � $�
� �	��
� �� ���
� �� ����
� �� ��(
�
�� ��)
 ��
��� *� ��������� ,
� K.

�������� � ���	� �� ���	������� �
�
 ��(
�
�� �	��
�� �� ���
� ��
 ����
� �� � $�
� ��
�

��)
� ��
 �	����
 �� ��
�

��
���
��� �� ��
���	��
 ��
 �
��������
 �� ��
 ����
� �� �

'9

81

goodelle
Oval

�	������ �� ��
 ���
 �
������

����
 -G ,
� K- %,�
����� *� &������ ?��
 "
������ $
������� ?��
 #���
�
���&

,�� *2 K �� ?��
� �� ��
�

O2L'01� '01 >�D> �>>� � �>>�
O2L'01� '01 >�D> �1>� � �0>�
O2L'01� '01 >�D> '>>� � �90�
O2L'01� '01 >�D> ->>� � '=0�

����
 .G ,
� K. %,�
����� *� &������ ?��
 "
������ $
������� ?��
 #���
�
���&

,�� *2 K �� ?��
� �� ��
�

O2L�>>
 �>> >�D> �>>� � �>>�
O2L'01� '01 >�D> �>>� � �>>�
O2L.>>� .>> >�D> �>>� � �>>�
O2LD>>� D>> >�D> �>>� � �>>�

+��	�
 D%�& ���� ��
 �
��������
 �� ���� �
�� ��� �
��
�� �� :
���� �� +�� ,
� K-�

������
� ��
 ��
���

�
��� ����� ��� �������� ** ��� �������� *� �� ��
 �������	���� ��

���
� �� �� ��
� �
���
� ���
 �����
� ��
 �
��������
 �� �������� ** �
���� �� ��������

���� �� �������� *� *� ��������� ��
 ��
���

�
��� ����� ��� ,
� K. �������
 ���� �� ����
��

�� ���
 �
����� �
��� �� �� ����
�����
 ����
��
 �� ��
 ���
 �� ��
 �
����� +��	�
 D%�&

���� ��
 �
��������
 �� ���� �
�� ��� �
��
�� �� :
���� '� ��
 ��
�� ���
��
� �� �
����

��
������ �� ���� ��� :
���� �� ��
 �
�	��� ������
� ���� ��
�

��
���
��� ��� ���

�
����� ��

��
��
� �
��	�
 �������� ** ���
�
���� �
��
� �� ���
 �
�	������ �� ����
�

�
��� ��������

'D

82

goodelle
Oval

0

20

40

60

80

100

120

140

160

T
im

e
 a

t
w

h
ic

h
 a

v
e

ra
g

e
 e

n
e

rg
y
 f
a

lls
 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

VDH256a/256 nodes VDH256b/256 nodes VDH256c/256 nodes VDH256d/256 nodes
VDH100e/100 nodes VDH256f/256 nodes VDH400g/400 nodes VDH900h/900 nodes

Simulation ID/# of nodes

Set #3 − Approach I
Set #3 − Approach II
Set #4 − Approach I
Set #4 − Approach II

0

10

20

30

40

50

60

70

T
im

e
 a

t
w

h
ic

h
 m

in
im

u
m

 e
n

e
rg

y
 f
a

lls
 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

VDH256a/256 nodes VDH256b/256 nodes VDH256c/256 nodes VDH256d/256 nodes

VDH100e/100 nodes VDH256f/256 nodes VDH400g/400 nodes VDH900h/900 nodes
Simulation ID/# of nodes

Set #3 − Approach I
Set #3 − Approach II
Set #4 − Approach I
Set #4 − Approach II

%�& %�&

+��	�
 DG %�&G ���
 ���
� ��� ��
 ��
���

�
��� �� ��� ���
� �� ���� �� 0>J �� ��E� ��������
���	
� %�&G ���
 ���
� ��� ��
 �����	�
�
��� �� ��� ��
 ���
� �� ���� �� 0>J �� ��E�
�������� ���	
�

->

83

goodelle
Oval

����� ���	�# ���'���
�� (�	 �
��)� !���

����
 0 �������� ��
 �
�	��� ��� ��
 �������	��
�
��� ����	������ �� � ���
 �� ��
 ������

���	����� ��� ������� ����
� ��� ,
� K�� !��� � ����� �������� �� ��
 �����
�
��� �� ����	�
�

�� ����	�������� ��� ��
 ������
 �
��� ����	�
� �� ��
 ���
 ����
� !��
��
 ���� ���
�

��
�� ���
 ���
 �
�
����� �
����
� �� �������� * ���� �� �������� **� ���� �� ��
��
��
�

�
�	��� ��������� �
��	�
 �� �������� * ��� ���
� �� � �
���� ��
 ��
� 	� ���
��� ����

��
�
�� ��	���� ��
� �� ����
� ��
� ��
 ����� �����
� ��� ����
� �
������

����
 0G ��
���
 J
�
��� ����	�
� �� ��
 ������ ���	����� ��� ������� ����
�

,
� K�G �������� * ,
� K�G �������� **
,�� *2 ����� ���	���� ������� ,�� *2 ����� ���	���� �������

42L�>> DD�D-D >�>�- >�>.9 42L�>> DD�0>1 >�>9� >�.�-
42L'01 D9�=10 >�>-D ���D1 42L'01 DD�.-= >�>9= >�.==
42L.>> D9�9>1 >�>-D ���00 42L.>> DD�.�1 >�>91 >�.DD
42L�>> D9�9>- >�>-= ���1� 42LD>> DD�.>. >�>9' >�0�0

����� ����	
����� �
�� &	#
�� %��'����# *����

����
� 1 ��� = ���� ��
 �����
�
�� ���� �
$�
 ���	������ �
�� K0 ��� K1 �
��
����
��� ��

(
�� �� ������� ��
 �
�	������ ���
� %��& �� ��	��
� �� ��
�
 �
��� *� ,
� K0� ���
� ��

����
� �� � �
������� ���������" ��
 �
����� ��� ��
� �� ��
 �
���� ��
 ���������� *� ,
�

K1� ���
� ��
 ����
� ��������" ��
 �
����� ��� ��
� �� ��
 �
���� ��
 ���������� +��

���� �
�� ��
 ���� �������
 �����
�
� �� ��
 ���

+��	�
 �>%�& ���� ��
 �
��������
 �� ���� �
�� ��� �
��
�� �� :
���� �� ��
 ���
 ��

-�

84

goodelle
Oval

����
 1G ,
� K0 %,�
����� *� &������ %
�	������ *��
�� $
������� ?��
 #���
�
���&

,�� *2 K �� ?��
� �� ��
�

O/L'01� '01 >�D> �>>� � �>>�
O/L'01� '01 >�=> �>>� � �>>�
O/L'01� '01 >�0> �>>� � �>>�
O/L'01� '01 >�-> �>>� � �>>�

����
 =G ,
� K1 %,�
����� *� &������ %
�	������ *��
�� %����� ?��
 #���
�
���&

,�� *2 K �� ?��
� �� ��
�

O//'01� '01 >�D> �>>� � �>>�
O//'01� '01 >�=> �>>� � �>>�
O//'01� '01 >�0> �>>� � �>>�
O//'01� '01 >�-> �>>� � �>>�

��
 �
���� ��
� ��� ��� ��� ����
�����
 ����
����� ��� ��
 �� ���
���
� ��
 �
�������

%,
� K0& �� ��
 ������ %,
� K1& ����
�
�� �� ���
�� 5��
��
� ��
 �
�	��� ��� :
���� '

���� �� +��	�
 �>%�& ���� �� ��� ������� ��� �����$���� ��
��� L�
�
�� ��
 �������

��������� �� ���� �� �

(
����
 ������ ��(
�
�� ���	
� �� ��" �������� ** �	��
������

�������� * ������ ��� ��
�
 ���	
��

����� ��)+
)
�# �(��� �,� �)���
�� �)��	
���

��
 ���
 ���
� �� ���
� ��
�
�� �B,� �� ����
��
� �� �
��������
 ���� ��

�
�	���� ���

�� ��
 ��������� �� �������
 �� ��
 �	��
� �� ���
� ����
��
� ��
�� �� �� ��� ��

(
�� ��

���
 �
����� �� ��

�
�	���� ���
� +��	�
 �� ���� ��
 ���
� ���
� ��
�
�� �B, ��� ,
�

-'

85

goodelle
Oval

10

20

30

40

50

60

70

80

T
im

e
 a

t
w

h
ic

h
 a

v
e

ra
g

e
 e

n
e

rg
y
 f
a

lls
 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

VRH256a/256 nodes VRH256b/256 nodes VRH256c/256 nodes VRH256d/256 nodes
VRR256a/256 nodes VRR256b/256 nodes VRR256c/256 nodes VRR256d/256 nodes

Simulation ID/# of nodes

Set #5 − Approach I
Set #5 − Approach II
Set #6 − Approach I
Set #6 − Approach II

5

10

15

20

25

30

35

40

45

50

T
im

e
 a

t
w

h
ic

h
 m

in
im

u
m

 e
n

e
rg

y
 f
a

lls
 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

VRH256a/256 nodes VRH256b/256 nodes VRH256c/256 nodes VRH256d/256 nodes
VRR256a/256 nodes VRR256b/256 nodes VRR256c/256 nodes VRR256d/256 nodes

Simulation ID/# of nodes

Set #5 − Approach I
Set #5 − Approach II
Set #6 − Approach I
Set #6 − Approach II

%�& %�&

+��	�
 �>G %�&G ���
 ���
� ��� ��
 ��
���

�
��� �� ��� ���
� �� ���� �� 0>J �� ��E� ��������
���	
� %�&G ���
 ���
� ��� ��
 �����	�
�
��� �� ��� ��
 ���
� �� ���� �� 0>J �� ��E�
�������� ���	
�

K� ��� ,
� K.� +�� ,
� K�� ��

�
����� ���
 �
����� �
���� �������� �� ��
 �	��
� ��

���
� ����
��
�� ���� �� �
��	�
 ��
 �
����� �� ���
� �� ��������� ��

(
�� �� ����
�����

��
 ���
 �
����� %,
� K.& �� �� ����
��
 ��
 ���
 ���
� ��
�
�� �B,�� ���� �� �
��	�
 ��

�	����� ���
 �� ��
 ��������� �� �(
��
� �� ��
 �	��
� �� �
������� ���
��� ���
�

����� ����	
����� �� "���	�
�� ,')
�# �(�����	 �-�	��

,���������
�
 ����
��
� �� ������
 ��

(
����
 ���
���
 �
�	����� ���� ��
 	�
� ��
���

���������� +��	�
 �'%�& ���� � ���� �� ��
 ���
 �� ���� ��
 $��� 	����
�
� ��
� ��

�
����
� ��� ,
� K� 	���� �������� ** ��� �������� *� +��	�
 �'%�& �
����� � ���� �� ��

J 	����
�
� ��
� ��� ���
 ��� '01 ��� D>> ���
�� ���� �������� ��
 ���
���
 �������
������

--

86

goodelle
Oval

100 256 400 900
0

20

40

60

80

100

120

140

T
im

e
(s

e
c
o

n
d

s
)

of nodes

Set #1
Set #4

+��	�
 ��G ���
 ���
� ��
�
�� �� �B, ��� �� ����
����� �	��
� �� ���
��

��
� ��

����
 ���	���
� ���
� +��� ���� ��
�
 $�	�
�� ���
��
 ���� �������� ** �� ���

�� ������
 ���
���
 �� �
�
��� ���
�� �� ������	�
 ����	���	� ��
 ���
���
 �� ��
 �
����

%���
 ���� ���� ���������� ����� ��� >J 	����
�
� ��� �	��
�
��	����
�� ��� �>>J

	����
�
�&�

/�/ #������ ��

����� ����	
����� �
�� &	#
�� %��'����# *����

����
 9 ����� ��
 �����
�
�� ���� �
$�
 ,
� K�0� +�� ���� �
�� ���
� ��
 ����
� ���	�� �

�
�����	��� �
���
�
� ��� ��
 �
���
�
� ���������� ������������ ��

�
��� ����	������

�
������ ��� ���� ��
����� �� �����)
� 	���� :
���� � %��
���

�
���& ��� :
���� ' %����

��	�
�
���&� ;��
���
��� ����	��
� ��� ���� ��
����� ���	�
 ���� ��
 ����
�
�� ���

-.

87

goodelle
Oval

10

20

30

40

50

60

70

80

90

T
im

e
 a

t
w

h
ic

h
 t
h

e
 f
ir
s
t
u

n
c
o

v
e

re
d

 a
re

a
 i
s
 r

e
c
o

rd
e

d
 (

h
o

u
rs

)

CDH100/100 nodes CDH256/256 nodes CDH400/400 nodes CDH900/900 nodes

Simulation ID/Number of nodes

Approach II
Approach I

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Time (hours)
%

 o
f
u

n
c
o

v
e

re
d

 a
re

a

Approach II: 256 nodes
Approach I: 256 nodes
Approach II: 900 nodes
Approach I: 900 nodes

%�& %�&

+��	�
 �'G %�&G ���
 �� ���� ��
 $��� 	����
�
� ��
� �� �
����
� ��� ,��	������ *2� %�&G
#���� �� J 	����
�
� ��
� ��� ���
 ��� ��(
�
�� �	��
� �� ���
��

�
����� �� ���
� ���	�� ��
 �
���
�
� �� $�
�� ��
 ���	
 �� ��
 �� �� ����
� �� ��	�
 ���

(
�� �� ��
�
 �
������

����
 9G ,
� K= %,�
����� **� &������ %
�	������ *��
�� .
���
�
� ?��
 #���
�
���&

,�� *2 K �� ?��
� �� ��
�

O/#'>>� '>> >�D> '>>� � '>>�
O/#'>>� '>> >�=> '>>� � '>>�
O/#'>>� '>> >�0> '>>� � '>>�
O/#'>>� '>> >�-> '>>� � '>>�

,��������� ��

�
��� ����	������ �
������ ��� ,�
����� ** �� ���
������
�� ��
 ���

���
 ��� �����	�
�
��� ���������� ��� ,
� K= �� ���
� �� +��	�
 �-� ,
� K=
�����
�

��

�
��� �������
������� ��� ,�
����� **� 3���
 �
��
����� ��
 �� ������� ��
 ���
���
 ��

-0

88

goodelle
Oval

0

20

40

60

80

100

120

T
im

e
 a

t
w

h
ic

h
 a

v
e

ra
g

e
 e

n
e

rg
y
 f
a

lls
 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

CDP200a/200 nodes CDP200b/200 nodes CDP200c/200 nodes CDP200d/200 nodes

Simulation ID/# of nodes

Set #7 − Approach I
Set #7 − Approach II

10

20

30

40

50

60

70

T
im

e
 a

t
w

h
ic

h
 m

in
im

u
m

 e
n

e
rg

y
 f

a
lls

 t
o

 5
0

%
 o

f
th

e
 o

ri
g

in
a

l
(h

o
u

rs
)

CDP200a/200 nodes CDP200b/200 nodes CDP200c/200 nodes CDP200d/200 nodes

Simulation ID/# of nodes

Set #7 − Approach I
Set #7 − Approach II

%�& %�&

+��	�
 �-G %�&G ���
 ���
� ��� ��
 ��
���

�
��� �� ��� ���
� �� ���� �� 0>J �� ��E� ��������
���	
� %�&G ���
 ���
� ��� ��
 �����	�
�
��� �� ��� ��
 ���
� �� ���� �� 0>J �� ��E�
�������� ���	
�

��
 �
���� �
�����
��� ��
 �����	�
�
��� �������
������ ���� ���
 ������
�
�� ���

��
� ���	
� �� ���

����� ����	
����� �� "���	�
�� ,')
�# �(�����	 �-�	��

+��	�
 �'%�& ���� � ���� �� ��
 ���
 �� ���� ��
 $��� 	����
�
� ��
� �� �
����
� ��� ,
�

K� 	���� �������� ** ��� �������� *� +��	�
 �'%�& �
����� � ���� �� ��
 J 	����
�
� ��
�

��� ���
 ��� �� ���	
� �� >�=> ��� >�-> �
��
����
��� ���	�� ��
 $��� 	����
�
� ��
� ��

�
����
� �� � ���
� ���
 ��� ��
� ���	
� �� ��� ��
 ��
���� ���
���
 �
�
������
� �	�� ���

������� ���� ��� ����
� ���	
� �� ��� +��	�
 �0 ���� ��
 ���
� �� ���� ��
 $��� ��
���

������ ��
 �
���
�
� �� �
����
�� +�� ��
� ���	
� �� ��� � ��
��� �� ���
��
�
����
� ��

-1

89

goodelle
Oval

0

20

40

60

80

100

120

140

T
im

e
 a

t
w

h
ic

h
 t

h
e

 f
ir
s
t

u
n

c
o

v
e

re
d

 a
re

a
 i
s
 r

e
c
o

rd
e

d
 (

h
o

u
rs

)

CDP200a/200 nodes CDP200b/200 nodes CDP200c/200 nodes CDP200d/200 nodes

Simulation ID/# of nodes

Approach II
Approach I

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

Time (hours)
%

 o
f

u
n

c
o

v
e

re
d

 a
re

a

Approach II: 200 nodes, RI = 0.70
Approach I: 200 nodes, RI = 0.70
Approach II: 200 nodes, RI = 0.30
Approach I: 200 nodes, RI = 0.30

%�& %�&

+��	�
 �.G %�&G ���
 �� ���� ��
 $��� 	����
�
� ��
� �� �
����
� ��� ,��	������ *2� %�&G
#���� �� J 	����
�
� ��
� ��� ���
 ��� ��(
�
�� �	��
� �� ���
��

��
 �
����� ��
�
 ����� �������
 ���� ���
 ��
� ���	
� �� �� ��	�
 ��
 ���
 ��� ��

�����	�
�
��� �� �
 ����
��
�� ��
 ��
���� ���
���
 �������
������ ��� ��� �
�
�������

������
 ��
� ���
� ?��
 ���� �� ��� ���
� ��
 �������� **
������� �
��������
 �	�
����

�� ���� �� ��
 �������� *�

% &��	���
��� ��� '���� !���

���� ���
� �
�����
� � �
� �� �������	�
� ���������� ������� �������	�
� �
���� �
�����

�� �	�� � �� �� �� ����
��

�
��� ��� ������
 ��

�
��� ����	������ ���� ������ ��

���
�� ��
�
 ����������
�
 ����
� �� �
 �������
 ��� �
���� ��)
� ;��
����
 ���	������

�
��������
� ��

(
����
�
�� �� ��
�
 ���������� �� � ����
�� �� ��
�������

-=

90

goodelle
Oval

20

40

60

80

100

120

140

160

180

T
im

e
 a

t
w

h
ic

h
 t

h
e

 f
ir
s
t

b
re

a
c
h

 i
s
 r

e
c
o

rd
e

d
 (

h
o

u
rs

)

CDP200a/200 nodes CDP200b/200 nodes CDP200c/200 nodes CDP200d/200 nodes

Simulation ID/# of nodes

Approach II
Approach I

+��	�
 �0G ���
 �� ���� ��
 $��� ��
��� �� �
����
� ��� ,��	������ *2�

��
 ���������� ��� ���	������� �� ���� ���
� ��� ��� ������
 �����$���� ���
������� ���

��
 	��
������ �
���� ��	���� ���
�
� ���� �����
 �� ���
 �� ����
�
 ���
�
��
��

���� ��� ������	��� ��	���� ���
�
� ��
 	��
������ ��	���� ���
�
 ��� ���
 ��
(
��

�� ��
 ������� ����������" ������������� ���� ���
������� ���� ��
 ������� ���������� ���

�
�	�� �� ���

(
����
 �������� +��
�����
� �
����� ���
� ��� �
 �������� �� ��
 �	������

�� ��
 �
����" �� ��
�
 ���
� ��
 ����
� ���
 ��� ���
� ���
� ����	��������� ����� ��

�
���� ��� ��
 ��
���	�
��� +	���
�� ��
 ����
�
�� �� �
���� ���
� �� ���� ��	��
�

�� ��

��
���
���� �
�	���� ,
���� ���
 ����
�
�� ��� ���
 � �����$����
(
�� �� ��

(
����
�
�� �� ��
 ������� ����������� #���
�
�� ���������� ���� ���
 ������� ���� ����	��

��	�� ����
�
 �	���
�
�
��� ��������

-9

91

goodelle
Oval

����	�

6�7 �� �������	
 �� ������
 �� �� �� ����������� %���� ��	
� �	 ���
�������� �� ��	��� 	�������� #���

������ *44 '>>�� %<	�
 '>>�&�

6'7 �� ����
 �� �������
 �� ����
 �� ���
 �� �� ������� &������� �	'
�������
 �������	����� #���

����� �� 4���
�
��
 �� ,
����� ��� ,���
�� %,
�����
;���&� ����
��� 4�� �,�� %����� �1��9 �DD1&� ��� --P-9�

6-7 �� �����
 �� ������
 � !����"�
 �� #� ��"��� (��� ��	���� ����'
��	���� "���� �� ����
�	����	 �	 ��	��� 	�������� �4: :���4�� DD� %�DDD&�

6.7 �� �	�����
 �� �� ���
 �� �� �� �����"��)������� ���������� ��� ��'
�����
� ���	��
 ����� ������	��� <�	���� �� #�����
� ��� 2������	�
� 4���	����� -=
%�DD1&� ��� �=�P�91�

607 �� $����������
 �� ������
 �� �� ������ *������

�+����	� � ����'
� �� �	
 �� ��� �����	������	 ����
��� ��� ��	��� 	�������� #���

����� �� ��
 ,����
���	�� *��
��������� 4���
�
��
 �� :����
 4���	���� ��� ?
����� %:���4!:
'>>>&� %'>>>&�

617 �� �%���"��
 �� &����
 �� #� $%����� � ��������� ������������ ��� ���
��'
��� ���
 ��	��� �	��������	 ��� ���� 4���	�
��� *;;; ������������ ��� .- %+
��	���
�DD.&� ��� �=0P�90�

6=7 �� �� ��� �� �� �� �����"�� � �������� ����� ������	� ���������� ,*�:
<�	���� �� ,��
���$� 4���	����� �. %�DD-&� ��� 10.P11D�

697 � ���
 �� ���'
 �� �� ������� (��� ��	���� ������	���� �� ��� 	�������	� ���
�����
���� *� #���

����� �� ��
 $��� ���	�� �4:A*;;; ���
��������� ����
�
��
 ��
:����
 ����	���� ��� �
�������� %�DDD&� ��� '=�P'=9�

6D7 �� (�)%� � ������ �������� ��������� ��� ��� ������� �	
���	
�	� ��� ��� ���� ,*�:
<�	���� �� 4���	����� �0 %�D91&� ��� �>-1P�>0-�

6�>7 !� *� ���+%
 � �� ����
 �� ����
 (� �� �����
 &� ��"���
 ��

�� ���������� &������� ��	��� 	������� ��� ���� ��	�����	� �	
 �	�������
 ����'
��� ������ ��	�����	� ����������	�� 4���
����� �� �
������� #��
��� �*�� F	�����
�
?���������� ��� 4������ 4���
�
��
 ��� ;�������#�������� !/� � %�	�� D���� �DDD&�

6��7 �� ��
 �� �������	
 #�,!� ���
 �� #���
 �� #���
 �� ���
 ��

�� ����������� ,��'����� �������� ��	��� 	�������� O5,* 2
���� '>>�� %<���
	��� '>>�&�

-D

92

goodelle
Oval

6�'7 �� ��
 �� �������	
 #�,!� ���
 �� #���
 �� #���
 �� ���
 �� �� ��

����������� �	 ������������ ��� � �����'�����
����� ���
 �������	��� 	�
��
*;;; 3������� �� ,����� #���
����� ,���
�� %,�#, E>>&� %!����
� '>>>&�

6�-7 *-��� -�	�� �.�/ ������	�� ��	����

6�.7 �� ������
 � ���
 �� �� ������ "����
���� &������� 	������� �� ����������'
����� ��	��� 	�
��� L�������� ������
 �� �DDD ;�
�������� /
�
���� 5��������� /
�
����
,	������ %�DDD&�

6�07 �� �������&������� ��	��� 	�������� �DD9 *���������� ��
��� 3�������� @������
��
*�
����� %''�'1 <	�
 �DD9&� ��� �-DP.>�

6�17 �� ������ �� �� ������� &������� �	�������
 	������ ��	����� 4���	���������
�� ��
 �4:� .- %:�� '>>>&� ��� 00�P9�

6�=7 � ��)��%
 � �""��
 � �� #���� ��
 �� �� ������)�����
����
'��� ��������
	�������	� �� � �0������ ���'�	���� ��	�����	���� 	�
��� 3O5,* '>>>� #���

������
*;;; 4���	�
� ,���
�� 3������� ��� %'>>>&� ��� DP�'�

6�97 �� #�������
 #� ����
 �� �� �� #���������� -	 ��
���	� 	������� �� ��������
�������	����� �
������� /
���� �:��45��?;,5�'>>>����>>�� ����
����� �� 4�������
���� 5�� ���
�
�� ?��
��
� '>>>�

6�D7 �� #+�����)����	�� �����	������	� '>>>�

6'>7 �� #����)�
 � ���
 .� ���������
 �� �� � ������� � ����'����	�1�	� ��������
��	��� 	������� -=�� ���
���� 4���
�
��
 �� 4���	��������� 4������� ��� 4���	��
���� %�DDD&�

6'�7 �� #��"" �� �� ���'� �������	� �	
 ��
���	� �	���� ��	��������	 �� 	������
�	�������� �	 ��	
'���

������� ������������ �� 4���	���������� ,�
���� *��	
 ��
:����
 4���	����� 9 %�DD=&� ��� ��'0P��-��

6''7 /� 0�
 � !����"�
 �� �� ������ �
������ �	����'��	�����	� �����	� ���
�������� �
 ��� 	�������� /
�
���� /
���� 0'=� �,4A*���������� ,��
��
� *�����	�
�
!����
� '>>>�

.>

93

goodelle
Oval

ABSTRACT

Recent advances in low-power embedded processors, ra-
dios, and micro-mechanical systems (MEMs) have made
possible the development of networks of wirelessly inter-
connected sensors. With their focus on applications requir-
ing tight coupling with the physical world, as opposed to
the personal communication focus of conventional wireless
networks, these wireless sensor networks pose significantly
different design, implementation, and deployment chal-
lenges. In this paper, we present a set of models and tech-
niques that are embodied in a simulation tool for modeling
wireless sensor networks. Our work builds up on the infra-
structure provided by the widely used ns-2 simulator, and
adds a suite of new features and techniques that are spe-
cific to wireless sensor networks. These features introduce
the notion of a sensing channel through which sensors de-
tect targets, and provide detailed models for evaluating en-
ergy consumption and battery lifetime.

1 INTRODUCTION

The marriage of ever tinier and cheaper embedded proces-
sors and wireless interfaces with micro-sensors based on
micro-mechanical systems (MEMS) technology has led to
the emergence of wireless sensor networks as a novel class
of networked embedded systems. Many interesting and di-
verse applications for these systems are currently being ex-
plored. In indoor settings, sensor networks are already be-
ing used for condition-based maintenance of complex
equipment in factories. In outdoor environments, these
networks can monitor natural habitats, remote ecosystems,
endangered species, forest fires, and disaster sites.

The primary interest in wireless sensor networks is due
to their ability to monitor the physical environment through
ad-hoc deployment of numerous tiny, intelligent, wirelessly
networked sensor nodes. Because of the large numbers of
sensor nodes required, and the type of applications sensor

networks are expected to support, sensor nodes should be
small, tetherless, and low cost. Due to these requirements,
networked sensors are very constrained in terms of energy,
computation and communication. The small form factor re-
quirement prohibits the use of large long lasting batteries.
Low production costs and low energy requirements suggest
the use of small, low power processors, and small radios
with limited bandwidth and transmission ranges. The ad-
hoc deployment of sensor nodes implies that the nodes are
expected to perform sensing and communication with no
continual maintenance and battery replenishment. The en-
ergy constraints call for power awareness, which in turn
leads to additional tradeoffs. The high-energy costs associ-
ated with wireless transmission, made particularly severe
for sensor networks because nodes with small antenna
heights placed on the ground see 1/r4 wireless link path loss
coupled with the ever reducing cost of processing has led to
a the adoption of a distributed computing viewpoint for
wireless sensor networks. Instead of simply sending the raw
data (perhaps compressed) to a gateway node, in typical ap-
plications the nodes in wireless sensor networks perform
computation for decision making within the network, either
individually via techniques such as signature analysis or in
local clusters using coherent combining of raw sensor sig-
nals (i.e. beam forming) or non-coherent combining of de-
cisions (i.e. Bayesian data fusion). By performing the com-
putation inside the network, communication may be
reduced thus prolonging the network lifetime

We construct a versatile environment in which sensor
networks can be studied. This environment employs a wide
range of models to orchestrate and simulate realistic scenar-
ios. Furthermore, since power consumption is also a key de-
sign factor, we emphasize power consumption and battery
behavior models. First we create a set of sensor node models
that are derived from the empirical power characterization of
two different nodes representing two extremes; the WINS
node (Rockwell Scientific Company LLC. 2001) from
Rockwell Science Center and the Medusa node, an experi-

SIMULATING NETWORKS OF WIRELESS SENSORS

Sung Park

Andreas Savvides
Mani B. Srivastava

Networked Emebedded Systems Laboratory

Electrical Engineering Departments
University of California, Los Angeles

Los Angeles, CA 90095, U.S.A.

1330
94

goodelle
Oval

goodelle
Text Box
Appendix D:

Park, Savvides, and Srivastava

mental prototype that we have constructed. These sensor
node models are combined into the widely used event queue
based network simulator, ns-2 (ns-2 Simulator 2001). By
introducing the notion of sensing channels in our simulation
environment and a flexible and highly parametrizable sce-
nario generation tool, we can study the power consumption
of sensor nodes by instrumenting complex sensor network
scenarios in a detailed graphical environment.

2 RELATED WORK

Although sensor networks have recently received a lot of
attention, there are still not many formal tools available for
the systematic study of sensor networks. The work in
(Ulmer 2001) presents a Java based simulator for sensor
networks. This is an online simulator that can create and
simulate simple topologies but does not have any explicit
models for sensors or power management. Up to this point
there is no publication on this work. On the network simu-
lation, numerous simulators are currently available such as
GloMoSim, OPNET and ns-2. These simulators provide
great flexibility in the simulation of wireless ad-hoc net-
works at all layers. Despite their effectiveness, these tools
are currently not equipped for capturing all the aspects of
interest in sensor networks.

3 SIMULATION ARCHITECTURE OVERVIEW

We motivate our discussion with an example of a sensor
network illustrated in figure 1. In this example, a set of
wireless nodes equipped different sensor for monitoring
natural habitat. The results of these sensors are processed
within the network and the final sensing report is for-
warded via wireless links to the gateway nodes that makes
the results available on the internet. The main goal of our
work is to recreate such scenarios in a versatile simulation
environment where the behavior of the sensor network can
be analyzed.

In our simulation environment, a typical sensor net-
work scenario will consist of three types of nodes: 1) sen-
sor nodes that monitor their immediate environment, 2)
target nodes that generate the various sensor stimuli that
are received by multiple sensor nodes via potentially many
different transducers (e.g. seismic, acoustic, infrared) over
different sensor channels; e.g. a moving vehicle generates

ground vibrations that trigger seismic sensors and sound
that triggers acoustic sensors, and 3) user nodes that repre-
sent clients and administrators of the sensor network.
Shown in figure 2, three type of node models make up the
key building blocks of our simulation environment. The
sensor nodes are the key active elements, and form our fo-
cus in this section. In our model, each sensor node is
equipped with one wireless network protocol stack and one
or more sensor stacks corresponding to different types of
transducers that a single sensor node may possess. The role
of the sensor protocol stacks is to detect and process sensor
stimuli on the sensing channel and forward them to the ap-
plication layer which will process them and eventually
transmit them to a user node in the form of sensor reports.
In addition to the protocol and sensor stacks that constitute
the algorithmic components, each node is also equipped
with a power model corresponding to the underlying en-
ergy-producing and energy-consuming hardware compo-
nents. This model is composed of an energy provider (the
battery) and a set of energy consumers (CPU, Radio, Sen-
sors). The energy consuming hardware components can
each be in one of several different states or modes, with
each mode corresponding to a different point in perform-
ance and power space. For example, the radio may be in
sleep mode, receive mode, or one of several different

Figure 1: Sensor Network Scenario

Figure 2: Sensor Node Model Architecture

Target
Node

Sensor Layer

Physical Layer

Sensor Stack

Sensor Channel

Target Application

Wireless Channel

User Application User
Node

Network Layer

Physical Layer

Network Stack

MAC Layer

Sensor Layer

Physical Layer

Sensor Stack3

Sensor Layer

Physical Layer

Sensor Stack2

Functional Model Sensor
SensorWare

Power Model

Battery
Model

Radio

CPU

ADC
(Sensor)

Wireless Channel

Sensor Channel1

Network Layer

MAC Layer

Physical Layer

Network Stack

Sensor

Physical Layer

Sensor Stack1

Sensor Application

Sensor Channel2

Sensor Channel3

1331

95

goodelle
Oval

Park, Savvides, and Srivastava

transmit modes corresponding to different symbol rates,
modulation schemes, and transmit power. Similarly, the
CPU may be in sleep mode, or one of several different ac-
tive modes corresponding to different frequency and volt-
age. The algorithms in the network and sensor stack con-
trol the change in mode of the power consumers. For
example, the MAC protocol may change the radio mode
from sleep to receive. In return, the performance of the al-
gorithms may depend on the mode. For example, the time
taken by the physical layer in the network protocol stack
would depend on the data rate of the mode the radio is cur-
rently in. All of this is accomplished by having the algo-
rithms in the network and sensor stacks issue mode change
events to the power consumer entities, and having the algo-
rithms read relevant parameter values from those entities.
Algorithm-induced changes in the operating modes of
power consuming hardware entities in turn affect the cur-
rent drawn by them from the battery which delivers the
power corresponding to the sum of current (or power)
drawn by each power consumer. Internally, the battery en-
tity depletes its stored chemical energy according to the ef-
ficiency dictated by the battery model.

Figure 3 illustrates how a typical sensor network will
be constructed and simulated using our simulation envi-
ronment. In figure 3, the wireless channel and sensor chan-
nel form separate communication mechanisms where
events from different nodes are passed through. A typical
scenario will involve a target node passing through a group
of sensor nodes deployed in the field. As the target node
moves around, it gives out sensor signal in the form of
events through the sensor channel and each sensor node
detects the events based on propagation model imple-
mented in each node’s sensor stack. When sensor nodes
determine the sensor signals (events) are noteworthy, they
transmit packets (also in the form of events) through the
wireless channel destined to the user node.

By separating the sensor channel and the wireless
channel, our sensor network model makes easier to simu-

late and analyze the operation of sensor network where the
sensor signal detection events and wireless communication
events can be received or transmitted concurrently. More-
over, by allowing sensor node to connect to multiple sensor
channels, our simulation environment provides ability to
analyze complex behaviors of sensor nodes’ reaction to
multiple sensor signals (i.e. seismic vibration, sounds,
temperature, etc..) that can be detected all at the same time.
In the following section, we discuss each components of
the sensor node model shown in figure 2, and explain how
we construct the model of different sensor nodes’ compo-
nents.

4 FRAMEWORK OF SENSOR
NETWORK SIMULATION

4.1 Node Placement and Traffic Generation

In studying the performance of a wireless sensor network for
a given application, a crucial element is the overall deploy-
ment scenario which includes the node placement topology,
the radio ranges, the sensing ranges, the trajectories of the
targets and resultant event traffics, and the trajectories of the
user nodes and their query traffics. All these elements con-
tribute to the different design trade-offs that can be made,
and it is crucial to evaluate the effects of a new algorithm or
protocol under diverse deployment scenarios.

To study such effects, we have developed a detailed
scenario generation and visualization tool that enables us to
construct detailed topologies and sensor network traffic.
Our simulation environment enables us to assess the re-
quirements of a sensor network under different circum-
stances by generating detailed scenario input to our simula-
tions. This complements the scenario generation techniques
provided in (ns-2 Simulator 2001) which are mainly tar-
geted to ad-hoc wireless communication networks. Sensor
node placement can vary depending on intended the task on
the network. For example, to monitor wildlife in a forest,
sensors may be uniformly distributed in the forest. If how-
ever, the sensor network is deployed for perimeter defense,
then the sensors will most likely be distributed around a
specified perimeter in a two dimensional gaussian distribu-
tion. In some other cases, the sensors may be manually
placed according to the requirements of the user.

Besides placement, the traffic requirements may be
even more diverse. Sensor network traffic can be classified
into 3 main types: 1) user-to-sensor traffic, which is a re-
sult of user commands and queries to the network, 2) sen-
sor-to-user traffic, which consists of the sensor reports to
the user and 3) sensor-to-sensor traffic, which includes
collaborative signal-processing of sensor events in the
network before they are reported to the user. The last type
of traffic is the most complex, and it depends on the sens-
ing method.

Figure 3: Sensor Network Model Architecture

Sensor
Node Sensor

Node

Sensor
Node

Wireless
Channel

Sensor
Channel

Target
Node

User
Node

1332
96

goodelle
Oval

Park, Savvides, and Srivastava

4.2 Sensor Stack and Sensor Channel

The sensor stack simulates how a sensor node generates,
detects and processes sensor signals. In sensor node model
(figure 2), the sensor stack is a signal sink that is responsi-
ble for triggering the application layer every time a sensing
event occurs. Various trigger functions ranging from sim-
ple sensing schemes to elaborate signal processing func-
tions can be implemented in the sensor stack. In target
node model, the sensor stack acts as a signal source. The
sensor stack of a target node will contain a signature that is
unique to the type of target the target node is modeling.
The signature is then transmitted through various mediums
(ground, air, free space, water, etc..) as the target node
moves around. figure 4a and 4b show a real and a simu-
lated signature obtained from a seismic sensor triggered by
ground vibration from a traveling vehicle.

In figure 4, the ground is the medium that transmits
the vibrations to the seismic sensor. We refer to this me-
dium as the sensor channel, a model of a medium which
sensor events such as seismic vibration, sounds, or infrared
signals are traveled through. The type of medium can dif-
fer based on the type of sensor being modeled (seismic,
acoustic, infra red, ultrasonic). Moreover, depending on
the medium being modeled, the propagation of signal can
differ. For instance, a sound moving through the air will
have different propagation as the same sound moving
through the water. In order to incorporate all these differ-
ent aspects of the sensor network in to our simulation, we
implement a simple sensor stack and sensor channel model
by modeling the target node as a gaussian source whose
signal amplitude is modeled as a gaussian random variable
with the mean equal to zero and the variance σ2. As the

target travels through the sensor network, the target exerts
the vibration signals (signal events) into the sensor channel
periodically. The sensor channel then delivers this events
to each sensor node’s sensor stack and each sensor node
adjusts the signal strength of the target based on sensor
channels propagation model. The figure 4b demonstrates
the signal strength variation as a target passes by a sensor
node on a straight line. As the target approaches the sensor
node, the signal strength increases, and as the target moves
away, the signal attenuates rapidly. In this simulation the
sensor signal was attenuated at a rate of 1/r where r is the
distance between the target and the sensor.

4.3 Hardware Components Characterization

Mode
ID

CPU Radio(OOK
Modulation)

ADC Total
Current

1 Active
2.9mA

Tx-19.2kbps
5.2mA

On 8.1mA

2 Active
2.9mA

Tx-2.4kpbs
3.1mA

On 6.0mA

3 Active
2.9mA

Rx:4.1mA On 7.0mA

4 Sleep
1.9mA

Sleep:5µA On 1.9mA

5 Off
1µA

Sleep:5µA Off 6µA

We construct our power models by performing measure-
ments of the hardware power consumption using an HP
1660 oscilloscope, a bench power supply, and a high preci-
sion resistor. The measurement setup and power relation-
ships are shown in figure 5. By characterizing each com-
ponent of the sensor nodes we enable the simulated nodes
to operate at different modes in which the power manage-
ment schemes can switch different components on and off.
Using the configuration in figure 5, the total current con-
sumption of our experimental sensor node is obtained in
Table 1. The measurements listed in Table 1 provide a bet-
ter insight into the power consumption of the sensor nodes
since the actual power consumption is oftentimes different
from the typical values provided in the manufacturer data
sheets depending on the mode of operation.

Table 1: Experimental Node Current Consumption

Figure 5: Power Measurement Configuration

0 10000 20000 30000
samples

-30000

-10000

10000

30000

16
bi

t A
D

C
 v

al
ue

a)

0 10000 20000 30000
samples

-40000

-20000

0

20000

40000

16
bi

t A
D

C
 v

al
ue

b)

Figure 4: a) Real Target Seismic Signature
b) Simulated Target Seismic Signature

1333
97

goodelle
Oval

Park, Savvides, and Srivastava

4.4 Battery Models

The Battery Model simulates the capacity and the lifetime
of the sole energy source of the sensor node, the battery.
In reality, battery behavior highly depends on the constitu-
ent materials and modeling this behavior is a difficult task.
Although the battery can be viewed as a energy storage,
the main goal of the sensor network is to increase the life-
time of the battery. Thus, in this section, we focus on how
battery’s capacity can be modeled based on the energy
consumers’ behavior. We propose 3 different types of bat-
tery models to study how different aspects of real battery
behavior can affect the energy efficiency of different appli-
cations. The metrics that are used to indicate the maxi-
mum capacity of the battery is in the unit of Ah (Am-
pere*Hour). The metric is a common method used by the
battery manufacturers to specify the theoretic total capacity
of the battery. Knowing the current discharge of the bat-
tery and the total capacity in Ah, one can compute the
theoretical lifetime of the battery using the equation ,

I
CT = , where T=battery lifetime, C=rated maximum

battery capacity in Ah, and I=discharge current.

4.4.1 Linear Model

In Linear Model, the battery is treated as linear storage of
current. The maximum capacity of the battery is achieved
regardless of what the discharge rate is. The simple battery
model allows user to see the efficiency of the user’s appli-
cation by providing how much capacity is consumed by the
user. The remaining capacity after operation duration of
time td can be expressed by the following equation.

Remaining capacity (in Ah) = ∫
+

=

−=
dtt

tt

dttICC
0

0

)(' (1)

where C’ is the previous capacity and I(t) is the instantane-
ous current consumed by the circuit at time t. Linear
Model assumes that I(t) will stay the same for the duration
td, if the operation mode of the circuit does not change (i.e.
radio switching from receiving to transmit, CPU switching
from active to idle, etc..) for the duration td. With these
assumptions equation 1 simply becomes as the following.

 d
tt

t

tt

tt

tIC'tIC'I(t)dtC'C d
d

⋅−=⋅−=−= +
+

=
∫ 0

0

0

0

 (2)

The total remaining capacity is computed whenever

the discharge rate of the circuit changes.

4.4.2 Discharge Rate Dependent Model

While Linear Model assumes that the maximum capacity
of the battery is unaffected by the discharge rate, Discharge
Rate Dependent Model considers the effect of battery dis-
charge rate on the maximum battery capacity. In [15] [16],
it is shown that battery’s capacity is reduced as the dis-
charge rate increases. In order to consider the effect of
discharge rate dependency, we introduce factor k which is
the battery capacity efficiency factor that is determined by

the discharge rate. The definition of k is,
maxC

C
k eff= ,

where Ceff is the effective battery capacity and Cmax is the
maximum capacity of the battery with both terms ex-
pressed in unit of Ah. In Discharge Rate Dependent Model,
the equation 1 is then transformed to the following.

 dtICkC ⋅−⋅= ' (3)

The efficiency factor k varies with the current I and is

close to one when discharge rate is low, but approaches 0
when the discharge rate becomes high. One way to find
out corresponding k value is for different current value of I
is to use the table driven method introduced in (Simunic
1999).

4.4.3 Relaxation Model

Real-life batteries exhibit a general phenomenon called
“relaxation” explained in (Fuller 1994, Linden 1995, Chi-
asserini 1999). When the battery is discharged at high rate,
the diffusion rate of the active ingredients through the elec-
trolyte and electrode falls behind. If the high discharge
rate is sustained, the battery reaches its end of life even
though there are active materials still available. However,
if the discharge current from the battery is cutoff or re-
duced during the discharge, the diffusion and transport rate

Figure 6: Capacity vs. Discharge Rate Curve for
CR2354 (Matsushita Electric Corp. of America
2001)

1334
98

goodelle
Oval

Park, Savvides, and Srivastava

of active materials catches up with the depletion of the ma-
terials. This phenomenon is called relaxation effect, and it
gives the battery chance to recover the capacity lost at high
discharge rate. For a realistic battery simulation, it’s impor-
tant to look at the effects of relaxation as it has effect of
lengthening the lifetime of the battery. For our simulation,
we adapt the analytical model introduced in (Fuller 1994)
which takes discharge rate as input and computes the bat-
tery voltage over the simulation duration.

5 EXAMPLE STUDY CASE

In this section we demonstrate some of the main capabili-
ties of our tool by studying the performance of different
battery models with various sensor node operation profile.

5.1 Low Rate/Low Power vs. High Rate/High Power

In this case study, we evaluate the battery consumption of
our experimental sensor node by considering different op-
eration profiles. In section 4.3, we have discussed how
each component of our sensor node has different power
consumption depending on its operation mode. In this sec-
tion, we examine how the combination of the operation
modes of different components affects the aggregate power
consumption of the sensor node. The scenario involves
two sensor nodes (a transmitter and a receiver) that are
within the transmission range of each other (approximately
15 meters apart) where the transmitter needs to transmit a
2MB file to the receiver. For the purposes of our discus-
sion we define 5 different operation modes for our experi-
mental node shown in table 1. To examine the energy con-
sumption and communication tradeoffs we evaluate 3
different data transmission policies.

1)19.2 kbps continuous transmission: The transmitter
sends data at the highest data rate without any break. The
transmitter will be operating in mode 1 and the receiver

will be operating in mode 3; 2) 2.4 kbps continuous trans-
mission: With lower data rate the sender can transmit at a
lower power level to reach the receiver. The transmitter
will be operating in mode 2 and the receiver will be operat-
ing in mode 3; 3) 19.2 kbps pulse transmission: The trans-
mitter sends data intermittently at the highest power level.
While the transmitter is not transmitting, the transmitter
puts the CPU and Radio to sleep. The transmitter power
cycle its component by transmitting one 60 byte packet at
19.2 kbps for .025 sec and sleeps for .125 sec until all the
data is received by the receiver. The transmitter will be
switching between modes 1 and 4, and the receiver will be
switching between mode 3 and 4.

Figure 7a shows the effect on each battery model ca-
pacity after the 2 MB data transfer for the three transmis-
sion methods described above. This experiment was per-
formed for all three battery models described in section
4.4. Initially, all batteries were set to a capacity level of 10
mA*hour. The left half of figure 7a describes the remain-
ing battery capacity of the transmitter after the file transfer,
and the right half shows the receiver battery capacity. The
solid bar in the figure indicates the total time for data trans-
fer. Looking at the solid bar, it is clear that the sending the
file at high data rate takes the least time thus the least bat-
tery capacity. Although the 2.4 kbps transmission and 19.2
kbps transmission took the same amount of time to trans-
mit the data, 19.2 kbps pulse transmission saved much bat-
tery capacity due to the sleep period. Figure 7a also
shows how different battery models exhibit different char-
acteristics under different transmission methods. The lin-
ear model shows how optimum battery will behave as it
shows the theoretical capacity of the battery under any dis-
charge current. On the other hand, the rate dependent
model accurately describes how real batteries will behave
when there is a constant discharge for long duration. This
is shown in 2.4 kbps transmission where the remaining ca-
pacity of rate dependent model is substantially less than the

19.2k 2.4k 19.2k Pulse
0

1E-005

2E-005

3E-005

4E-005

5E-005

6E-005

ba
tte

ry
 u

til
iz

at
io

n/
se

c

19.2k 2.4k 19.2k Pulse 19.2k 2.4k 19.2k Pulse

Transmitter Receiver

0

1000

2000

3000

4000

5000

6000

7000

tim
e

(s
ec

)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rem
aing capacity (full =1)

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

������
������
���

Time
linear
rate-dependent
relaxation

Figure 7: a) Battery Capacity Usage Under Different Discharge Profiles, b) Battery Utilization Rate

a) b)

1335
99

goodelle
Oval

Park, Savvides, and Srivastava

linear model. The other interesting model is the relaxation
model which exhibits the both discharge rate dependent
capacity and recovery effect. Since the relaxation model
has recovery properties, the difference between relaxation
model and rate dependent model is shown in the pulsed
transmission cases. In figure 7a the relaxation model has
the same remaining battery life as rate dependent model for
19.2kbps and 2.4 kbps continuous transmission and recep-
tion. However, in 19.2 kbps pulse transmission and recep-
tion, the relaxation model has almost equal capacity as the
linear model due to the capacity recovery during the sleep
mode.

5.2 Monitoring a Moving Vehicle in a Sensor Field

In this implementation we first show the effect of traffic on
the sensing and communication traffic and then we evalu-
ate simple power management scheme using the same sen-
sor node setup as in the previous subsection. For this we
have implemented a lightweight protocol stack similar to
what one would expect to have on a tiny sensor node. The
radio transmission and reception are driven by a TDMA
based medium access control (MAC) protocol based on
unique slot assignment algorithm derived from [9]. The
MAC protocol assigns a unique slot to each node over a 2-
hop radius and each node is aware of its one-hop neighbors
and their corresponding slot assignment. For routing, we
have implemented a very lightweight table-driven routing
protocol with table size of one (next hop to user node).
The motivation for TDMA scheme comes from our result
in section 5.1 where a pulse transmission and reception can
improve the battery utilization in the long term. In our
power aware TDMA scheme this requirement is met for
both the transmission and reception of packets. For trans-
mission, a node is only allowed to transmit in its assigned
time-slot. For reception, a node only needs to listen to the
wireless channel for the duration of the slots that are al-
ready assigned to its one-hop neighbors. For the purposes
of our discussion we refer to all the other remaining slots
as idle slots.

In this scenario, a small cluster of 10 sensors equipped
with seismic sensors is deployed to detect a bypassing
truck as shown in figure 8a. The seismic sensors run at a
sample rate of 400Hz to produce 16 bit samples. The sen-
sor nodes are configured to report back to a gateway node
that makes the results available on the Internet. Each sen-
sor is programmed to transmit a report to the gateway
within 5 seconds from the moment the ground vibrations
from the truck are detected. If at least 2048 samples are
obtained, the node can perform coherent detection and it
will transmit a 10 byte to report the target type. This short
packet is called “coherent traffic”. If however, the node
does not have enough samples at the end of the 5-second
period, it enters a non-coherent detection mode and trans-
mits all its available samples to the gateway node which
performs sensor data combination (called “beamforming”
[20]) to improve the detection accuracy. Since the sensor
node transmits raw data when it enters non-coherent detec-
tion mode, the size of non-coherent data tends to be lot lar-
ger than the coherent traffic. This non coherent raw data is
referred to as “non-coherent traffic” During the simulation,
the network traffic will be consist of coherent and non-
coherent traffic depending on whether the individual sen-
sors successfully classified the target. We discuss the re-
sult of the simulation in the following two sub sections.

5.2.1 Efficiency of Power Management
Scheme with TDMA

One apparent advantage of TDMA over other CSMA ran-
dom access MAC protocols is the fact that the sensor nodes
do not have to be in receive mode during the time slots
where none of its neighbors are schedule to transmit. This
allows the sensor nodes to perform a simple power man-
agement scheme that puts the CPU and radio to sleep dur-
ing idle slots to conserve battery capacity. With this setup,
we evaluate the efficiency of battery capacity utilization
when this simple power management scheme is used. Fig-
ure 8a is the scenario used for our evaluation. It consists of
100 nodes uniformly distributed across a sensor field. The

Figure 8: a) 100 Node Test Topology, b) Battery Capacity Usage

0 500 1000 1500 2000 2500

time(sec)

0

10

20

30

40

50

60

70

av
er

ag
e

ba
tte

ry
 c

ap
ac

ity
 u

se
d

(%
)

linear [pm]
rate-depedent [pm]
linear [nopm]
rate-dependent [nopm]

a) b)

1336

100

goodelle
Oval

Park, Savvides, and Srivastava

target travels at approximately 22 mph (10 m/s) through
the track every 2 minutes. The target signals have an
effective range of 20 meters. As the target travels through
the sensor field, every node within the range of the target
start collecting signal samples at 400 Hz, then send reports
to the user node. We tested this scenario using the linear
model and the rate dependent model by looking at battery
utilization when the power management scheme is imple-
mented (PM) and when there is no power management
(NOPM).

The current drawn by each node will be similar to the
cases described in section 5.1 with power management
case resembling the 19.2 kbps pulse transmission and the
no power management case resembling the 19.2 kbps con-
tinuous transmission. Figure 8b shows the average battery
capacity utilization for each node. The bottom two curves
show the difference in battery capacity utilization when the
power management was used and the top two describe the
cases when no power management is used. As the figure
indicates, there is almost 100% improvement of battery
utilization with the power management.

5.2.2 Effect of Sensor Power Cycle

In addition to the battery saving achieved by the TDMA
power management scheme, we further look at how the
sensor nodes can power cycle their sensors to conserve bat-
tery capacity. In this scenario (figure 9a), a square grid of
sensor network is strategically placed over a flat field. The
target travels along a pre-specified path and the sensor
nodes attempts to make either coherent or non-coherent de-
tection as described in the previous section. One difference
in this scenario is that the sensor nodes attempt to turn on
the sensors only intermittently to conserve power. When
the sensor is turned off, the CPU of our experimental sen-
sor node can go to mode 5 (table 1) where the power con-

sumption is in the range of microwatts. However, the
trade-off comes from the reduction of detection and classi-
fication accuracy since the sensor will miss the sensor sig-
nals coming from the target when they are turned off. The
cost of such missed events may be very application spe-
cific. If the target occurrence is very frequent, it may be
okay to miss its detection, but if the occurrence is very in-
frequent, it may be very crucial to detect that one inci-
dence. It is possible that the whole sensor network may
have been deployed to detect that “one” incidence. There-
fore, in designing sensor network it’s crucial to look at the
application requirement as well as the target characteristics
to guarantee of certain quality of service (QoS) similar to
the one provided in telecommunication network. One such
QoS guarantee will be something like “a target with a 20
mph speed following this track will not pass through the
sensor field undetected”. In this section, we try to look at
what would be the maximum battery power saving that can
be achieved while providing such QoS guarantees.

We look at the impact of a simple power management
scheme which randomly wakes up the sensor within a pre-
specified time window of 100 seconds and stay up for dif-
ferent percentage of duration. Figure 9b shows the battery
capacity used and the amount of coherent data bytes
transmitted for different power cycle durations. The plot
indicates that there is a rapid decrease in coherent detection
as the power cycle percentage decrease from 60% to 50%.
On the other hand, the battery utilization steadily decreases
as the power cycle percentage decreases.

6 CONCLUSIONS

We have demonstrated a flexible toolset for studying
power consumption in sensor networks. With the flexible
architecture that closely simulate the behavior of real sen-
sor network, accurate power models of sensor nodes and

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

40 50 60 70 80 90 100

% time on

0

200

400

600

800

1000

1200

1400

1600

1800

2000

co
he

re
nt

 d
at

a
tr

af
fic

 (b
yt

es
)

5

7

9

11

13

15

17

19

21

23

25

battery capacity used (%
)

����
coherent traffic
battery capacity used %

Figure 9: a) Sensor Scenario in Grid Sensor Network b) Coherent Traffic Data and the Battery Efficiency Of Various
Power Cycle Durations

a) b)

1337
101

goodelle
Oval

Park, Savvides, and Srivastava

analysis of battery behavior are utilized in a tool to evalu-
ate power consumption in the context of a realistic sce-
nario. With these results we can assess the power
consumption for new sensor nodes that are currently under
development. Furthermore, this tool has been an indispen-
sable aid in estimating the resources required for the net-
work protocols to function correctly in new node architec-
tures. By simulating and validating target protocols we can
also get a good indication of code size and memory re-
quirements thus resulting in feasible low cost designs. We
envision that this set of tools will play an instrumental role
in the design and implementation of new application spe-
cific sensor networks.

REFERENCE

Chiasserini, C. F., and R. R. Rao. 1999. Pulsed battery dis-
charge in communication devices. In Proceedings of
Mobicom 99, Seattle, August 1999.

Fuller, T. F., M. Doyle, and J. Newman. 1994. Simulation and
Optimization of the Dual Lithium Ion Insertion Cell.
Journal of Electrochem. Soc., vol. 141, no. 4, pp 1-10.

Linden, H.D. 1995. Handbook of Batteries. 2nd ed. New
York: McGrawHill.

Matsushita Electric Corp. of America. 2001. Panasonic
lithium coin cell battery datasheet. Available via
http://www.panasonic.com/industrial_
oem/battery/battery_oem/chem/lith/li
th.htm [accessed July 9, 2001].

ns-2 simulator. 2001. ns-2 Simulator, Available via
http://www.isi.edu/nsnam/ns/ [accessed
July 9, 2001].

Rockwell Scientific Company LLC. 2001. WINS (Wireless
Integrated Network Systems) Project. Available via
http://wins.rsc.rockwell.com/ [accessed
July 9, 2001].

Simunic, T., L. Benini, and G. De Micheli. 1999. Energy-
Efficient Design of Battery-Powered Embedded Sys-
tems. In Proceedings of International Symposium on
Low Power Electronics and Design, 212-217, Pis-
cataway, New Jersey.

Ulmer, C. 2001. Sensor Network Simulator, Available via
http://users.ece.gatech.edu/~grimace
/research/sensorsimii/ [accessed July 9,
2001].

AUTHOR BIOGRAPHIES

SUNG PARK is a Ph.D. student of Electrical Engineering
at University of California Los Angeles. He received his
MS from Carnegie Mellon University in 1997. His
research interests are network simulation and modeling,
low power embedded systems, and sensor network. His
email and web addresses are <spark@ee.ucla.edu>
and <http://www.ee.ucla.edu/~spark>.

ANDREAS SAVVIDE is a Ph.D. student of Electrical
Engineering at University of California Los Angeles. He
received his MS from University of Massachusetts, Am-
herst in 1997. His research interests are adhoc wireless
network, embedded system, and sensor network. His email
and web addresses are <asavvide@ee.ucla.edu>
and <http://www.ee.ucla.edu/~asavvides>.

MANI B. SRIVASTAVA is an Associate Professor of
Electrical Engineering at University of California Los An-
geles. He received his Ph.D. from U. C. Berkeley in 1992.
His research interests are low power VLSI circuits, em-
bedded systems, and sensor networks. His email and web
addresses are <mbs@ee.ucla.edu> and <
http://nesl.ee.ucla.edu/people/mbs/>.

1338
102

goodelle
Oval

ENERGY EFFICIENT ROUTING IN WIRELESS SENSOR NETWORKS

Curt Schurgers

Mani B. Srivastava

Networked & Embedded Systems Lab (NESL), Electrical Engineering Department
University of California at Los Angeles (UCLA), CA

ABSTRACT

Wireless sensor nodes can be deployed on a battlefield and
organize themselves in a large-scale ad-hoc network.
Traditional routing protocols do not take into account that
a node contains only a limited energy supply. Optimal
routing tries to maximize the duration over which the
sensing task can be performed, but requires future
knowledge. As this is unrealistic, we derive a practical
guideline based on the energy histogram and develop a
spectrum of new techniques to enhance the routing in
sensor networks. Our first approach aggregates packet
streams in a robust way, resulting in energy reductions of
a factor 2 to 3. Second, we argue that a more uniform
resource utilization can be obtained by shaping the traffic
flow. Several techniques, which rely only on localized
metrics are proposed and evaluated. We show that they
can increase the network lifetime up to an extra 90%
beyond the gains of our first approach.

I. INTRODUCTION

Recently IC and MEMS have matured to the point where
they enable the integration of communications, sensors and
signal processing all together in one low-cost package. It is
now feasible to fabricate ultra-small sensor nodes that can
be scattered on the battlefield to gather strategic
information [1]. The events detected by these nodes need
to communicated to gateways or users who tap into the
network. This communication occurs via multi-hop routes
through other sensor nodes. Since the nodes need to be
unobtrusive, they have a small form-factor and therefore
can carry only a small battery. As a result, they have a
limited energy supply and low-power operation is a must.
Multi-hop routing protocols for these networks necessarily
have to be designed with a focus on energy efficiency.

The proposed approaches lean towards localized
algorithms [1][2]. Due to the large number of sensors,
network-scale interaction is indeed too energy expensive.
Moreover, a centralized algorithm would result in a single
point of failure, which is unacceptable in the battlefield. In
this paper, we propose two options for localized
algorithms to increase the sensor network lifetime: (1)

minimize the energy consumption of transmissions and (2)
exploit the multi-hop aspect of network communications.

The first option is to combine/fuse data generated by
different sensors [1][2]. In [3] cluster head selection is
proposed to perform this task. However, in section IV, we
present a robust way of achieving the same functionality
without explicit cluster formation.

The second option focuses on the paths that are followed
during the data routing phase. The framework presented in
[2] advocates a localized model called ‘directed diffusion’.
Other work uses information on battery reserve and the
energy cost to find the optimal routes [4]. The routing
protocol in [5] is based on the node’s location, transmit
energy and the residual battery capacity. In contract to this
prior work, we propose a guideline that aims at spreading
the network traffic in a uniform fashion. Our spreading
ideas, although partly tailored towards the underlying
routing algorithm we have chosen, should be beneficial for
the energy aware routing protocols mentioned above. We
discuss these spreading techniques in section V.

However, before discussing our data fusion and spreading,
we first focus on the problem statement: how to increase
the lifetime of a network of energy constrained devices.
This results in a practical guideline, which considers the
energy histogram. All of this is treated in section II.

II. PROBLEM STATEMENT

1. Energy Optimal Routing

Traditional ad-hoc routing algorithms focus on avoiding
congestion or maintaining connectivity when faced with
mobility [6]. They do not consider the limited energy
supply of the network devices. The example of figure 1
illustrates how the limited supply alters the routing issue.
Nodes A and E first send 50 packets to B. Afterwards, F
sends 100 packets to B. From a load balancing perspective,
the preferred paths are ADB, ECB and FDB respectively.

However, when the nodes are energy constrained such that
they can only send 100 packets, these paths are no longer
optimal. Indeed, D would have used up 50% of its energy

103

goodelle
Text Box
Appendix E:

A

B

D C
E F

before it can forward packets from F to B. In this case, all
packets could have been delivered by choosing paths ACB,
ECB and FDB. If, instead of F, node C would have
become active, A should have used the original path ADB.

Figure 1: Load versus energy oriented routing

This simple case study highlights the following crucial
observation: optimal traffic scheduling in energy
constrained networks requires future knowledge. In our
example, a maximum number of packets can reach B only
if right from the start we know exactly when (and which)
nodes will generate traffic in the future.

2. Energy Efficient Routing

Ideally, we would like the sensor network to perform its
functionality as long as possible. Optimal routing in
energy constrained networks is not practically feasible
(because it requires future knowledge). However, we can
soften our requirements towards a statistically optimal
scheme, which maximizes the network functionality
considered over all possible future activity. A scheme is
energy efficient (in contrast to ‘energy optimal’) when it
is statistically optimal and causal (i.e. takes only past and
present into account).

In most practical surveillance or monitoring applications,
we do not want any coverage gaps to develop. We
therefore define the lifetime we want to maximize as the
worst-case time until a node breaks down, instead of the
average time over all scenarios. However, taking into
account all possible future scenarios is too computationally
intensive, even for simulations. It is therefore certainly
unworkable as a guideline to base practical schemes on.
Considering only one future scenario leads to skewed
results, as shown in the example of figure 1.

3. Traffic Spreading Rationale

To derive a practical guideline, we start from the following
observation: the minimum hop paths to a user for different
streams tend to have a large number of hops in common
[7]. Nodes on those paths die sooner and therefore limit
the lifetime of the network. Figure 2 presents a typical
energy consumption histogram at a certain point in time.
Some nodes have hardly been used, while others have
almost completely drained their energy.

Figure 2: Undesirable energy histogam

As nodes that are running low on energy are more
susceptible to die sooner, they have become more critical.
If we assume that all the nodes are equally important (we
revisit this assumption in section V.2), no node should be
more critical than any other one. At each moment every
node should therefore have used about the same amount of
energy, which should also be minimized. The histogram of
figure 3 is thus more desirable than the one of figure 2,
although the total energy consumption is the same.

Figure 3: Desirable energy histogram

Striving for a compact energy histogram translates into
the guideline that traffic should be spread over the network
as uniformly as possible. Since visualizing the histogram
over time is hard, we propose to use the root mean square
ERMS as an indicator instead (the lower this value, the
better). It provides information on both the total energy
consumption and on the spread.

III. BASIC ROUTING

As an underlying routing scheme, we base ourselves on the
paradigm of directed diffusion [2]. When a user taps into
the sensor network, he announces the type of information
he is interested in. While flooding this ‘interest’ possibly
using techniques like SPIN [8], gradients are established in
each node. These gradients indicate the ‘goodness’ of the

Energy used (%)

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

Nodes (%)

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

Energy used (%)

Nodes (%)

104

0

2

4

6

8

1 3 5 7 9

no DCE
one DCE
more DCE

B/R

Etot (mJ)

0

100

200

300

400

500

1 3 5 7 9

no DCE
one DCE
more DCE

B/R

Delay (ms)

different possible next hops and are used to forward sensor
data to the user.

We have opted for a simple instantiation of this paradigm,
which we call Gradient-Based Routing (GBR). While
being flooded, the ‘interest’ message records the number
of hops taken. This allows a node to discover the minimum
number of hops to the user, called the node’s height. The
difference between a node’s height and that of its neighbor
is considered the gradient on that link. A packet is
forwarded on the link with the largest gradient. Although
our techniques to increase the network lifetime are built
upon GBR, the main principles are general enough to also
be applicable to other ad-hoc routing protocols.

IV. DATA COMBINING

1. Data Combining Entities (DCE)

Individual sensor nodes process their sensor data before
relaying it to the user [1]. It is advantageous to combine
observations from different nodes to increase the resource
efficiency. This process reduces not only the header
overhead, but also the data itself can be compacted as it
contains partly the same information.

Although this combining can be implemented by explicitly
selecting a cluster head [3], we present a scheme that is
more robust to random node failures. First note that sensor
nodes that are triggered by the same event, are typically
located in the same vicinity. The resulting cloud of
activated nodes is also in close communication proximity.
The routes from these nodes to the user merge early on [7].
Nodes that have multiple streams flowing through them
can create a Data Combining Entity (DCE), which takes
care of the data compaction. Simulations have shown that
the DCEs are located inside or very close to this cloud of
activated nodes.

This scheme is highly robust. When a node with a DCE
dies, the packets automatically take an alternative route
and pass through another node that can create a new DCE.

2. Simulations

Figure 4 depicts the effects of our DCE-based data
compaction on the total energy consumption. The nodes in
this simulation are distributed randomly over a rectangular
area with a constant width of 32 m and a linearly
increasing length B. The radio transmission range R is 20
m and the average node density is kept constant at 10-2/m2.
The nodes at the top of this area sense a target and notify a
user that is located at the bottom end (the transmission of
one packet takes 5.76 ∝J). For our numerical results, we
assume that a packet that is combined with another one can

be compressed to 60% of its original size. We consider 3
distinct cases: without DCE, with at most one DCE (a
compression bit in the packet header signals if the packet
has been compressed already) on each route to the user and
with no restrictions on the number of DCEs. The reduction
in energy consumption is as expected (up to a factor 2 to
3), linearly proportional to the number of bits sent.

Figure 4: Energy comparison for DCE

Figure 5: Delay comparison for DCE

The flip side is the average delay per packet, which is
presented in figure 5. Since DCEs have to buffer data for a
while, the packet delay will increase with the number of
combining stages applied. Whether or not this is
acceptable depends on the application.

V. NETWORK TRAFFIC SPREADING

1. Spreading Techniques

Stochastic Scheme: Using a rationale similar to the one of
[9], each node can select the next hop in a stochastic
fashion. More specifically, when there are two or more
next hops with the same lowest gradient, a random one is

105

U

B C

A

D

E

F

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

Standard

Stream based

Energy used (%)

Number of nodes

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11

Standard
Stochastic
Energy based
Stochastic energy based
Stream based

Time (s)

ERMS (mJ)
chosen. This does not increase the length of the path
followed, but nonetheless contributes to spreading the
network traffic.

Energy-based Scheme: When a node detects that its
energy reserve has dropped below a certain threshold (50%
in our simulations), it discourages others from sending
data to it by increasing its height. This may change a
neighbor’s height (since a node’s height is one more than
that of its lowest neighbor). It in turn informs other nodes
and these updates are propagated as far as is needed to
keep all the gradients consistent.

Stream-based Scheme: The idea is to divert new streams
away from nodes that are currently part of the path of other
streams. A node that receives packets tells all its neighbors
except to the one from where the stream originates, that its
height has increased. Again, other nodes must make sure
the gradients remain consistent. As a result of this scheme,
the original stream is unaffected, since those nodes have
not updated the height of the next hop. New streams of
packets, however, will take other paths as the height of the
nodes on the first path has apparently increased.

2. Simulations

Figure 6: Wireless sensor network topology

Scenario 1: Nodes A and B (see figure 6) detect a
different target and send packets to the user at regular
intervals. After generating 100 packets each (this takes
11.8 seconds), these targets disappear and both nodes
become inactive again. At this time, no node has been
drained yet completely and the network connectivity is still
fully intact. We have assumed a node has only 0.76 mJ of
energy at its disposal (which is enough to send about 140
packets). The results can readily be scaled towards more
realistic scenarios. Figure 7 shows the evolution of ERMS as
a function of time, for 5 different schemes. The
unenhanced GBR is called ‘standard’. Besides the three
schemes discussed in V.1, we have also studied a
combination of the stochastic and energy-based one.

Figure 7: ERMS for scenario 1

It is clear that the stream-based scheme indeed spreads the
traffic more uniformly over the network. As soon as the
energy of some nodes drops below 50%, the energy-based
scheme kicks in. The stochastic routing provides an
improvement both on top of the normal GBR and on top of
the energy-based scheme.

Figure 8: Energy histogram after 6 seconds

To verify that the ERMS captures the relevant information,
figure 8 shows the energy histogram for the standard and
the stream-based scheme after 7 seconds. It is clear that
spreading balances the energy consumption better.

 Finally, we would like to show that the improved energy
histogram is able to extend the network lifetime for a
particular future scenario, although this does not prove
anything about other possible futures. After 11.8 seconds
node C starts forwarding packets to the user. Table 1
shows that the schemes that resulted in better traffic
spreading also increase total traffic that reaches the user.
We have verified that the time the network remains intact
is increased by 90% when using the stream-based scheme.

106

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10 11

Standard
Stochastic
Energy based
Stochastic energy based
Stream based

Time (s)

ERMS (mJ)

Scheme Packets received
Standard 127
Stochastic 133
Energy-based 160
Stochastic energy-based 161
Stream-based 175

Table 1: Packets received for scenario 1

Scenario 2: Nodes D and E (figure 6) each send 100
packets to the user in 11.8 s. Figure 9 illustrates that our
traffic spreading schemes again result in a more uniform
utilization of the network resources.

Figure 9: ERMS for scenario 2

As before, we investigate one particular future activity
scenario: node C becomes active after 11.8 seconds. From
table 2, we conclude that spreading the network traffic has
a negative effect as fewer packets are received! This is
because the route taken by the standard GBR protocol
avoids bottleneck node F. On the other hand, preading the
traffic of D and E diverts some packets via F and therefore
already partly drain this node before C can use it. This
illustrates that spreading might increase the lifetime,
although this does improve all possible futures. We
observe however that the problems in this case are largely
due to the fact that node F is critical as it is the only
gateway to an entire subnet. Enhanced spreading
techniques should therefore try to avoid critical nodes.

Scheme Packets received
Standard 217
Stochastic 211
Energy-based 193
Stochastic energy-based 193
Stream-based 176

Table 2: Packets received for scenario 2

VI. CONCLUSIONS

In this paper we have argued that optimal routing in sensor
networks is infeasible. We have proposed a practical
guideline that advocates a uniform resource utilization,
which can be visualized by the energy histogram. We
acknowledge however that this is only a first cut at
tackling this complicated issue. For example, exceptions
must be made when nodes are critical in the overall
network connectivity. We also propose a number of
practical algorithms that are inspired by this concept. Our
DCE combining scheme reduces the overall energy, while
our spreading approaches aim at distributing the traffic in a
more balanced way. We note that although we have started
from GBR, our basic ideas and techniques should be able
to enhance other routing protocols as well.

REFERENCES

[1] Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.,
“Protocols for Self-Organization of a Wireless Sensor
Network,” IEEE Personal Communications Mag.,
Vol.7, No.5, pp.16-27, Oct. 2000.

[2] Estrin, D., Govindan, R., “Next Century Challenges:
Scalable Coordination in Sensor Networks,”
MobiCom’99, Seattle, WA, pp.263-270, Aug. 1999.

[3] Rabiner, W., Chandrakasan, A., Balakrishnan, H.,
“Energy-Efficient Communication Protocol for
Wireless Microsensor Networks,” Hawaii
International Conference on System Sciences, Maui,
HI, pp.10-19, Jan. 2000.

[4] Chang, J.-H., Tassiulas, L., “Energy Conserving
Routing in Wireless Ad-Hoc Networks.,”
INFOCOM’00, Tel Aviv, Israel, pp.22-31, Mar. 2000.

[5] Stojmenovic, I., Lin, X., “Power-Aware Localized
Routing in Wireless Networks,” Proceedings IPDPS
2000, Cancun, Mexico, pp. 371-376, May 2000.

[6] Broch, J., Maltz, D., Johnson, D., Hu, Y. Jetcheva, J.,
“A performance comparison of multi-hop wireless ad-
hoc network routing protocols,” Mobicom’98, Dallas,
Texas, pp.85-97, Oct. 1998.

[7] Pearlman, M., Haas, Z., “Improving the Performance
of Query-Based Routing Protocols through ‘Diversity-
Injection’,” WCNC’99, New Orleans, LA, pp. 1546-
1550, Sept. 1999.

[8] Rabiner, W., Kulik, J., Balakrishnan, H., “Adaptive
Protocols for Information Dissemination in Wireless
Sensor Networks,” MobiCom’99, Seattle, WA, pp.
174-185, Aug. 1999.

[9] Dattatreya, G.R., Kulkarni, S.S., “Simulation of
Adaptive Statistically Multiplexed Routing in Ad Hoc
Networks,” WCNC’99, New Orleans, LA, pp. 931-
935, Sept. 1999.

107

Abstract-- Technological advances have spurred the development of ad-hoc networks comprised of

numerous wireless sensor nodes. The vast majority of data that needs to transverse the sensor network

consists of only a few bytes, including all network and application layer identifiers. Therefore, MAC

addresses, which are vital in a shared medium, present too much overhead, particularly because they are

traditionally unique fixed length IDs. To tackle this overhead, we propose a new dynamic MAC addressing

scheme for ad-hoc sensor nets that exploits spatial reuse. A distributed algorithm that can tolerate

unidirectional links, assigns the addresses. In addition, we present a variable length address representation,

based on prefix coding. Our dynamic addressing scheme scales almost perfectly with the network size due

to its distributed assignment algorithm and the variable length address representation, rendering it well

suited for sensor networks with thousands or millions of nodes.

I. INTRODUCTION

Propelled by the trend towards miniaturization, wireless sensor nodes have been developed, equipped with integrated sensing

capabilities, signal processing and radio communications [1][2][3]. Thousands or even millions of these nodes are networked

together in an ad-hoc fashion, sense their surroundings and coordinate amongst each other through short-range low-power

wireless transceivers. These nodes could be dropped on a battlefield or other inhospitable terrain and form an ad-hoc surveillance

network [2][4]. Others envision networked sensors to monitor factory and office conditions or even wildlife [1][3]. It is well

recognized that most sensor networks (like the above examples) consist out of immobile nodes [2][4][5][6]. Although it is

possible to design networks with mobile sensors, we explicitly focus on the dominant subclass of node immobile sensor net.

Because of their required unobtrusiveness for most applications, the sensor nodes have a small form-factor and rely solely on

battery energy. As it is typically impossible to replace the batteries in the operating scenarios described before, low energy

consumption is critical [2][3][4][5][6]. When networking these nodes together, the effects of this requirement ripple through the

entire system, from data generation to communications and protocols. Radio communications, for example, have to be restricted

in range and therefore are multi-hop in nature [2][6].

A crucial issue regarding energy efficiency is the observation that every bit transmitted takes a bite out of the node’s lifetime

[6][9]. We will show in section II that MAC addresses contribute considerably to the header overhead in data packets. In this

Distributed Assignment of Encoded MAC

Addresses in Wireless Sensor Networks

108

goodelle
Text Box
Appendix F:

- 2 -

paper, we focus on the issue of reducing the size of MAC addresses in wireless sensor networks, translating directly in energy

savings for data transmissions. Our distributed addressing scheme, based on spatial reuse and encoded address

representation, reduces the MAC address size by a factor 3 to 6. Furthermore, it scales extremely well with the network size,

and as such is resilient to varying or unknown network sizes and densities.

II. THE USE OF ADDRESSES

1. MAC and Network Address

Before delving into our addressing scheme, we first turn the reader’s attention to the role of MAC addresses. The distinction

between MAC and network layer addresses is well understood for networks such as the Internet. However, in wireless ad-hoc

networks this distinction is not as crisp and often both types of addresses are condensed into one unique identifier that is used by

routing, link layer and application layer protocols alike [18][6]. Consider the example in figure 1a where a packet needs to be

routed from A to G via the multi-hop path A-B-D-F-G. The letters represent the network layer addresses of the nodes. In sensor

networks, routing state is typically kept in the nodes [2][6][25]. When node D on the path forwards the packet to F it needs to

include in the header both the final destination G and the next hop F. The first address, which serves as a network address, is

needed for F to figure out the next hop to the final destination. It is clear that the network addresses need to be network wide

unique to be able to identify all possible destinations. The second address, which serves the purpose of a MAC address, is

needed because B, C and E have to know that they are not the intended receivers.

The MAC addresses, however, need not be network wide unique! We can use the MAC addresses represented by the numbers

in figure 1b (the network address of each node is still the one in figure 1a), where addresses 0 and 3 have been reused. Node D

can use MAC address 0 to identify the next-hop receiver and network address G for the final destination. As all neighbors of node

D have a distinct MAC address, no confusion arises. The reason is that the functionality of the MAC address is restricted to the

direct transmission neighborhood of a node, allowing careful spatial reuse. Spatial reuse leads to a decrease in number of distinct

addresses used, which can therefore represented by a smaller number of bits.

Figure 1: Decoupling address functionality, (a) network address and (b) MAC address

A B

C

D

E

F

(a)

G 0 1

3

2

4

0

(b)

3

S

N

EW

109

goodelle
Oval

- 3 -

2. Naming and Addressing

In traditional networks, an ID based name identifies the destination. This name is then mapped onto the network address, which

is used for routing. On the level of the individual hop, the MAC address identifies the next hop receiver. However, in sensor

networks typical queries are not ‘what is the temperature of node #27563’ or ‘is there a rhino near node #85396’, but rather ‘where

is the temperature higher than 60 degrees’ or ‘notify me of any big animals in the south-east quadrant’. As such, attribute based

naming schemes replace the traditional ID based ones [6][7]. Furthermore, the upfront translation from the name to the network

address is omitted in favor of a lazy resolution, and the routing functionality is for a large part based directly on attributes such as

location [8][11]. The reason for this approach is energy efficiency, as more common attributes can be coded in a small number of

bits. Typical attributes are ‘all nodes in this geographic area’ (traffic to the nodes) or ‘the nearest gateway’ (traffic from the nodes).

Each node is still equipped with a unique network address, but only very rarely will this be used for routing (exceptions are for

administrative and diagnostic purposes) [2][6]. Furthermore, the majority of data traffic flows from sensor nodes to ‘data sinks’ [6],

which typically are specialized gateway nodes that forward data to the end-users [2]. A large fraction of sensor network traffic

therefore has the routing attribute ‘to the nearest gateway’, which can be encoded very efficiently as a single bit ‘0’ (while the less

common attributes are encoded with ‘1’ followed by further denotation). As a result, the dominant core network traffic will carry

only a 1-bit or very short name attribute as a replacement of a network address.

3. MAC Address Overhead

Despite the attribute based naming, MAC addresses are still required in sensor networks. Assume that in figure 1 a packet

needs to be routed from node A to the east-most side of the network. A possible routing protocol could be that a node forwards

packets to all nodes that are in the target direction ±45 degrees. When node D forwards the packet it includes the attribute ‘east’

as a replacement of the network address. However, it also has to include its MAC address 2, such that E knows the sender is D

(in which case it has to forward the packet) and not F (in which case it would have had to drop the packet). We have assumed that

each node knows the location of its neighbor through a location discovery protocol. Many other alternatives can be conceived, but

they all require the MAC address of sender or receiver or both to be transmitted. This observation holds true not only for

contention based medium access (with or without paging channel), but also for broadcast TDMA [10][11]. Also note that random

identifiers [9] cannot serve the purpose of MAC addresses, as they do not guarantee the absence of collisions.

Furthermore, it has been recognized that forwarding the raw sensor data to the end-user is not a viable solution [2]. In order to

conserve network resources, nodes process data locally, coordinate amongst neighbors and forward only the aggregated data or

decision information [4]. Consequently, the amount of data involved in network scale communication is typically in the order of 8 to

16 bits per packet [2][9]. Considering the extremely small amount of application data and the compact attribute names, the

110

goodelle
Oval

- 4 -

overhead of the unique node ID as a MAC address would be prohibitive. For a wireless sensor network of 10,000 nodes, this

would mean that a network wide unique MAC address requires 14 bits, which is typically around half the total packet size. A

globally unique MAC address (such as an Ethernet address) would be even more overkill. As every bit transmitted reduces the

lifetime of a sensor node, it is crucial to limit the packet size to an absolute minimum [9] and the goal of our research is to reduce

this MAC overhead. As we have argued in figure 1, MAC addresses only need to be unique in the transmission neighborhood

of a node and can be spatially reused. In the remainder of this paper, we will use the term ‘address’ to denote the MAC address.

4. Related Work

Other researchers have explored the idea of spatially reusing addresses. The scheme in [12] dynamically assigns addresses in

a cellular LAN scenario. Our work does not rely on a centralized controller, which makes it more scalable and robust in terms of

node failures. Related, although not identical, assignment problems have been studied for TDMA, FDMA and CDMA. In [13] a

unified framework is presented that encompasses all assignment problems, including ours, but the specific constraints of address

reuse are not discussed. Algorithms to solve the distributed assignment for TDMA [14][15] or CDMA [16][17] can be extended for

address assignment, although they do not consider unidirectional links (which is an important issue). Some of them also assume

that the network has a stationary topology at the start of the protocol, which is not the case in sensor networks. The most

important difference with all the prior work on assignment algorithms is that added benefit can be found in encoding the

assignment, which leverages the fact that not all addresses are used equally often. There is no analogy to this in TDMA, FDMA or

CDMA. The target in address assignment is therefore not simply using as few addresses as possible, but also reuse the same

ones as often as possible. We will explain this in more detail in section V.

III. ADDRESS REUSE CONSTRAINTS

In this section, we explore the constraints that govern the address assignment. It is assumed each node has a (network wide)

unique ID incorporated in it and is equipped with a low-power transceiver with a bounded transmission range, typically in the order

of a few tens of meters [10][11][18][19]. Furthermore, this transmission range of the radios in the different nodes may not be

exactly the same due to variations in the physical device implementation as well as in the wireless propagation environment. As a

consequence, communication links between two nodes are not necessarily bi-directional. Any algorithm we devise must be able to

cope with both unidirectional and bi-directional links in order to be useful in real life scenarios.

In addition, we opt for a distributed address assignment algorithm as the network wide communication needed for a centralized

algorithm comes at an extensive overall energy cost, especially when the number of sensor nodes is large. Moreover, the network

topology is not perfectly constant. During deployment, the nodes typically boot independently and can remain inactive for a

111

goodelle
Oval

- 5 -

substantial amount of time. Furthermore, they can fail when they run out of battery or are physically destroyed. The network has to

remain operational during this entire period. It is therefore imperative that the address assignment algorithm quickly acquires a

valid solution that tracks the topology changes. We call this property additive convergence. A centralized algorithm would require

global updates, which are too costly. Only a distributed algorithm is a viable option.

Figure 2 depicts a node A and all its neighbors. We call nodes that can both receive from and send to A bi-directional neighbors

(in this case nodes B and C). Nodes that can only receive from A are called out-neighbors (D and E), while those that can only

send to A are called in-neighbors (G and F). When a node has a packet to transmit, each neighbor has to be able to figure out

whether or not it is the intended receiver. Intuitively, this means that all bi-directional and out-neighbors need to have a different

address. However, in a distributed algorithm this condition is impractical. From figure 2, it is clear that node A has no direct means

of gathering information on the addresses that D and E choose. It does not even know of their existence!

Figure 2: Address constraints for bi- and unidirectional links

We can tackle this issue by restricting the data communication to the bi-directional links only. In this case, A can only forward

data to B or C. This restriction makes sense for typical higher layer protocols that rely on acknowledgments, path reversals or

otherwise assume bi-directional links. The intended receiving nodes, B and C, need distinct addresses of course. Nodes D and E

still overhear the transmission, but they are never the intended receiver. Of course, both D and E need to be able to identify the

link as being one of their unidirectional links, or equivalently whether this transmission is from one of their in-neighbors or from one

of their bi-directional neighbors. When the sender address is included in the packet as well, the fact that they hear the

transmission completely identifies the link. Knowing that they only have a unidirectional link to A, they can conclude they are not

the intended receivers. We assume that each node has established its bi-directional neighbors through a discovery protocol prior

to the address assignment. The resulting constraints are given by lemma 1. They specify a valid address assignment that can be

achieved by a distributed algorithm in the presence of unidirectional links. These constraints are new to the best of our knowledge

and therefore define a new assignment problem.

A

B

G

F E

D

C

112

goodelle
Oval

- 6 -

Lemma 1: When the normal-mode data communication of node A is restricted to its bi-directional neighbors, a

valid assignment of addresses is such that all bi-directional neighbors have distinct addresses and that all in-

neighbors have addresses different from those of the bi-directional neighbors, for any node A.

The first part of lemma 1 ensures that B and C have different addresses, since they can be intended receivers of node A. The

second part of this lemma tells that F and G have addresses different from those of B and C, although the addresses of F and G

themselves do not need to be different. As a consequence, node A can distinguish between its senders with which it has a

unidirectional link and with which it has a bi-directional link. Although node A cannot send information back to F or G, it can

instruct B and C to choose addresses that do not conflict with those of F or G.

IV. DISTRIBUTED ASSIGNMENT ALGORITHM

1. Algorithm Description

The pseudo-code of our distributed assignment algorithm is presented in figure 3. Its core operation is based on a periodic

broadcast packet: broadcast_pkt (line 7). This packet contains the node’s neighborhood information: its own address and those

of its neighbors it is has knowledge of (i.e. bi-directional and in-neighbors). The addresses of these neighbors are obtained by

listening to their periodic broadcasts. Each node therefore obtains information on its one-hop and two-hop neighbors, which is

stored in the structure constraints (line 10). This information is “soft-state” and a timeout invalidates the entry for a particular

neighbor if that node is not heard from for a while (line 6). Going back to figure 2, node B can learn about the addresses of C, F,

and G by listening to the periodic broadcasts of A. One cycle after a node boots up, it chooses an address that satisfies lemma 1

based on the information in constraints (line 5). A detailed description of how valid address is chosen will be discussed in

subsection V.2.

Since periodic transmissions are also needed for connectivity discovery/updating and for other network maintenance and

management protocols, the neighborhood information could be piggybacked onto them with only a few bits added [2].

Furthermore, the period of the broadcast (which we call the cycle time) can be increased once the transient boot-up phase is over

and made comparable to the expected time constant of the network dynamics (i.e. frequency of node failures, etc.). As an

alternative to the (adaptive) periodic broadcasts, we can opt for a reactive scheme with explicit request() packets to solicit a

broadcast_pkt from neighboring nodes. Now, the nodes send out this request when entering the network, or when suspecting

changes in topology due to nodes failures (through indications from higher layers). Which of these options is the best depends on

the specific network dynamics and deployment scenario. In any case, the expected number of broadcast_pkt over the lifetime of

a node is rather small. We will discuss the tradeoff between the protocol overhead and the savings in address size in section V.

113

goodelle
Oval

- 7 -

 1 set(timer);

 2 while (1): wait for event

 3 case event == timer

 4 if (no_addr())
 5 choose_addr(constraints);

 6 check_timeout(constraints);

 7 send(broadcast_pkt);

 8 set(timer);

 9 case event == broadcast_pkt

10 update(constraints);

11 if (addr_conflict(constraints))
12 send(conflict_pkt);

13 case event == conflict_pkt

14 update(constraints);

15 choose_addr(constraints);

16 send(broadcast_pkt);

17 end while

Figure 3: Distributed address assignment algorithm

At each instant in time, the network consisting of the active nodes with an address has a valid assignment and is therefore

operational. This algorithm therefore satisfies the property of additive convergence. The final address selection corresponds to the

centralized scheme with random ordering presented in [12]. However, the additive convergence property also requires extra

provisions in the algorithm. Even though the active nodes have chosen a valid, i.e. non-conflicting, address, the waking up of a

new node, may invalidate the existing address assignment as illustrated in figure 4.

At first, all active nodes have chosen a valid address based on the algorithm we have just explained (figure 4a). When the dark

node boots up (figure 4b), its mere presence causes a new address conflict between the nodes with address 0. The new node

detects this problem and instructs one of these two nodes to choose another address (in this example, address 4). Lines 11 to 16

in the algorithm are devoted to the detection and resolution of such problems. When a node, in the above example the dark node,

detects an address conflict while receiving a broadcast_pkt, it orders one of the nodes with a bi-directional link to choose another

address by sending a conflict_pkt packet. If the conflict is simply between in-neighbors, no action is taken since it is both not

necessary (see lemma 1) and impossible to correct. When receiving this conflict_pkt packet, a node chooses a new address the

same way it did before, now based on updated constraints information. A new broadcast_pkt is transmitted to inform the other

nodes that a new address was chosen and the old one is freed up.

114

goodelle
Oval

- 8 -

Figure 4: Address conflicts due to a new node

2. Packet Formats

Finally, we present the packet formats we propose to use. Figure 5a illustrates the structure of a broadcast_pkt. The first bit

identifies the packet as being a control message of our protocol. The second bit marks it as a periodic broadcast message,

thereby fixing the type of fields that follow. The next two fields contain the unique node ID and address of the sender. The ‘Bitmap’

encodes the addresses of the sender’s neighbors. Although we will describe how a specific address is chosen amongst the valid

ones in the section V, for now it suffices to know that a node selects the lowest address that does not collide. As a result, the

addresses of the neighbors are more likely to be towards the lower end of the address range. The bitmap field in figure 5b exploits

this property, where a ‘1’ at position x indicates that a neighbor has picked this address. The lower Lb addresses are encoded this

way. They are followed by a single bit indicating whether another set of Lb addresses is appended (‘1’) or not (‘0’). We choose Lb

equal to 16 in our implementation. Figure 6 illustrates the structure of the conflict message. Again, the first two bits identify the

packet as being a control packet and a conflict message respectively. The third bit is set to ‘0’ if the packet does not contain the

address of the sender (figure 6a), which occurs when it has not chosen an address yet. Since these messages are sent to a

particular receiver, the ID of this receiver is needed as well.

(a) (b)

Figure 5: (a) Broadcast message and (b) bitmap field

(a) (b)

Figure 6: Conflict message

11 Tx ID Rx ID Tx addr Bitmap 111 Tx ID Rx ID Bitmap 0

01 Tx ID Tx addr Bitmap 1 1 1 10 0 00 11 11 00 00 00

Lb Lb

40
1

1 2

2
3

0 0
1

1 2

2
3

(a) (b)

115

goodelle
Oval

- 9 -

V. ADDRESS SELECTION AND REPRESENTATION

1. Address Representation

Thus far we have only specified how a node learns about the addresses it may not pick, but we have not detailed yet how it

chooses an address from the remaining ones. In fact, this choice is tightly linked to the way we propose to represent the

addresses in data packets. Therefore, we discuss our address representation first. For now, it suffices to observe that the number

of addresses needed is related to the number of neighbors of a node. This directly follows from the formulation of lemma 1.

Traditionally, protocols represent addresses using a fixed length address field, such as in Ethernet or IP. We denote the total

number of sensor nodes in the area under scrutiny by N. The algorithm we have presented permits reuse of addresses and

therefore reduces the maximum address needed from N to a smaller number. The highest address any node in the sensor field

ends up with, clearly determines the number of bits needed. This typically corresponds to a node that has a large number of

neighbors, or alternatively where locally the network density is high. Even when we know the approximate network density, it is

hard to predict the maximum address needed. Global communication to determine the maximum address is undesirable.

Therefore, enough safety margin needs to be provided to account for rare but not impossible cases of high local densities. When

the average network density is not known a priori, the situation is even more unfavorable.

We propose a new alternative way of representing an address. Our scheme, which we call encoded address representation,

has the advantage that it typically requires less bits then the fixed representation. Furthermore, it exhibits graceful scaling

properties with network density and is perfectly independent of network size (i.e. scales perfectly with N). Our encoded scheme

does not transmit the address itself, but a codeword representing the actual address. The codeword itself is prefix coded, which

means that the end can be identified as it is encountered [20]. Although the length of the codeword is variable, it can uniquely

be deduced from the codeword itself. More specifically, we utilize the well-known Huffman coding. When for each address the

probability of occurrence is known, this scheme results in a minimum average codeword length. In subsequent data packets,

instead of sending the address, we use the codeword instead. The address selection protocol uses regular integer numbers as

addresses. However, in data transmissions, the codewords can perfectly assume the role of addresses.

2. Address Selection

From the previous discussion, it is apparent that it is beneficial to reuse addresses as often as possible, such that their

probability of occurrence is higher. Although it does not really matter which address is used the most, from a practical standpoint it

is easiest to try to reuse the lower addresses as frequently as possible. This corresponds perfectly to intuition. Next, we illustrate

the address selection for an example setup with a specific node density. In section VI, we will discuss how the performance

116

goodelle
Oval

- 10 -

depends on the density and other operation parameters. In figure 7, the continuous solid curve, labeled ‘incremental’, corresponds

to the algorithm of figure 3 where the lowest non-conflicting address is chosen in the function choose_addr(). It illustrates the

frequency at which each address was eventually assigned. These results were obtained through simulations written on the Parsec

platform, an event-driven parallel simulation language [21]. We assume N nodes are distributed randomly over a square field of

size L x L and each of them has a transmission range R. For a uniform network density, the average connectivity depends only on

the average number of neighbors of a node, denoted by parameter . .

 (1)

Since the address assignment depends solely on the network connectivity, it is logical that its performance depends only on .

and not on N, R and L separately. We have verified this statement through simulations. In the example of figure 7, N = 500, L2 =

50,000 m2 and R = 17.84 m (which is a reasonable value for sensor nets [18]). This results in . = 10. A node boots at a random

time in an interval of 10 seconds. The initial broadcast cycle is set to 10 seconds. Once the network has booted up, the period can

be extended or we can switch to a reactive scheme, without any noticeable influence on the performance. The results are

averaged over 500 simulation runs.

Figure 7: Example of address selection frequency

Based on this ‘incremental’ curve, the optimal encoded address format can be derived through Huffman coding. The results are

listed in table 1. For addresses higher than 23, the codeword can be obtained from the codeword of the previous address by

replacing the ending 0 by 10. The average encoded address, which is calculated by multiplying the address size with its frequency

of occurrence, requires only 4.41 bits. The fixed addressing scheme would have resulted in at least 6 bits, since the maximum

address encountered was 34.

Address

Frequency

2
2

R
L

N π. •=

117

goodelle
Oval

- 11 -

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bits 4 4 4 4 4 4 4 4 4 4 4 4 5 5

Code 0000 000

1

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100:0 1100:1

Address 14 15 16 17 18 19 20 21 22 23

bits 5 5 5 5 6 6 7 7 7 8

Code 1101:0 1101:1 1110:0 1110:1 1111:0:0 1111:0:1 1111:1:00 1111:1:01 1111:1:10 1111:1:11:0

Table 1: Example of address encoding corresponding to figure 7

Upon further inspection of table 1, we notice that several addresses require the same number of code bits, what we define as

being in the same range (e.g. addresses 0 to 11 are encoded in 4 bits). From a practical perspective, all of these addresses are

equally efficient. Instead of choosing the lowest non-conflicting address in choose_addr(), selecting a random address in the

lowest range possible results in the same average code length. The dashed curve (called ‘range based’) in figure 7 illustrates this

alternative. We see indeed that all addresses that result in the same number of bits are selected equally often. The average

dynamic address size is still 4.41 bits.

Furthermore, our simulations confirm the intuition that the ‘range based’ curve can be derived from the ‘incremental’ one, by

averaging the probability of all addresses in the respective range. For example, the probability of the first twelve addresses for the

‘range based’ scheme is equal to one twelfth of the sum of the probabilities of addresses 0 to 11 in the incremental scheme. Even

though in practice addresses are picked randomly in a range, we can thus perfectly analyze the performance in number of

address bits needed by investigating the incremental scheme. In the remainder of this paper, we therefore focus on the

distribution of addresses chosen and need to consider only the incremental case since it encompasses the range based one

as well.

3. Algorithm Overhead

Although the average address size is the same for the incremental and range based address selection, there is a clear

advantage in control overhead as illustrated in table 2. This table lists for both curves of figure 7 the average number of packets

and bits sent per node in the send() statements of lines 12 and 16. We do not include the periodic broadcasts, since they add a

fixed overhead, which depends on the period and on the potential for piggybacking. For this example, the encoding of the addr

field of the control messages (see figures 5 and 6) was according to table 1. The ID field, on the other hand, depends on the

anticipated network size. In our simulations, we allocated 14 bits.

118

goodelle
Oval

- 12 -

conflict_pkt broadcast_pkt

Packets Bits Packets Bits

Incremental 0.546 25.34 0.546 16.19

Range based 0.319 18.66 0.319 12.11

Table 2: Control overhead per node

We can use this information to evaluate the overall tradeoff between protocol overhead and savings in address size. The

protocol overhead expressed in number of bits is denoted as BO. From table 2, we can derive that for the range-based scheme,

BO is given by (2). In this expression, M is the number of periodic broadcasts over the entire lifetime of a node (the packet size is

derived from our simulations, which incorporate piggybacking). We also know that the number of bits saved BS is equal to (3),

compared to a network wide unique MAC address of 14 bits. Here, P is the total number of data packets sent by a node and the

factor 2 accounts for the fact that both the sender and receiver MAC address is incorporated in the packets.

 (2)

 (3)

Our dynamic addressing scheme results in an overall decrease in number of bits sent if BO < BS or equivalently when:

 (4)

Although some nodes might not send any traffic at all, e.g. when there is absolutely no activity to report in their sector, these

nodes are not critical for the overall network lifetime anyway. It is the nodes that forward a lot of traffic that are the critical ones,

and for these (4) is likely to be satisfied. Further note that only the initial cycle is short. Once the cycle is matched to the network

dynamics or is switched to the reactive mode, the number of broadcast packets is limited. The exact value of M strongly depends

on the network deployment and sensing scenario, as node failures and reactivation follow directly from the network traffic patterns,

routing strategies and overall network management. Our simulations show that M is typically to the order of 20-50. We therefore

expect that condition (4) will be satisfied for almost all sensor networks.

We would like to emphasize that the numerical results of figure 7, table 2 and the analysis above are bound to the settings in

this particular example. As we will illustrate in section VI, other network densities result in different values. Since the address

encoding of table 1 is derived from figure 7, it is thus optimized for these particular settings. Other network densities will have

another optimal address encoding. For practical applications, the network density will have to be estimated, such that a good

encoding can be selected. We will revisit this issue in section VI.

)95.23()11.1266.18(•++= MBO

PBS •−•=)41.414(2

6.12.1 +•> MP

119

goodelle
Oval

- 13 -

4. Computational requirements

A possible drawback of our encoded address scheme is the fact that codewords instead of addresses are transmitted. During

data transmission, the sender needs to know the codeword of the intended receiver, which can be stored in a table. At the

receiver side, some more work is needed since the encoded addresses do not have a fixed length. In fact, the codewords have to

be stepped through bit by bit in order to detect their end. However, this overhead in header processing is negligible compared to

the savings in transmission energy.

Communication

RFM 2.4 kbps over 20 m 0.18 ∝J / bit

RFM 2.4 kbps over 80 m 0.94 ∝J / bit

Conexant RDSSS9M 100 kbps over 100 m 1 ∝J / bit

Computation

StrongARM SA-1100 (150 MIPS, 1.5 V) 1.5 nJ/instr

StrongARM SA-1100 (250 MIPS, 2.0 V) 2.2 nJ/instr

Table 3: Communication and computation costs

Table 3 illustrates this claim by comparing the communication cost (with the low-power RFM [22] or Conexant [18] radio) versus

the computation cost (on a low-power StrongARM SA-1100 embedded processor [23]). For these devices, which are believed

representative for sensor network and are used by various research groups working in this field [18][19], the cost of transmitting 1

bit is equivalent to 80 to 600 instructions. The savings therefore clearly outweigh the cost of Huffman decoding (which should not

take more than a few tens of instructions on average).

VI. PROTOCOL ANALYSIS

1. Influence of Network Density

To evaluate the influence of network density, figure 8 depicts the performance of our algorithm for different values of .

assuming a uniform node density. It is apparent that the less connected the network is (lower .), the more frequent the lower

addresses can be used. This is intuitively clear as fewer neighbors cause less address conflicts. We have also evaluated the

memory requirements of our algorithm for different values of . . Since the required amount of storage in a node depends on its

number of neighbors, which varies between nodes, we pick a dynamic memory allocation scheme. Table 4 lists the required

storage for both the average and worst case (for N = 500 nodes, but these values are almost independent of N).

120

goodelle
Oval

- 14 -

Figure 8: Addresses chosen for different value of .

 . 5 10 15 20

 Average (bytes) 23 47 71 91

Worst case (bytes) 68 142 217 293

Table 4: Average memory requirements per node

Up until now, we have always assumed a uniform node density. To illustrate that our analysis does not depend on this

assumption, we have simulated the algorithm on a field with the non-uniform density, where nodes are randomly distributed

according to figure 9a. The second highest level (the arms of the cross shape) corresponds to . = 10. The spatial distribution of

the address size, averaged over 1,500 simulation runs, is given in figure 9b. We used the address encoding of table 1.

(a) (b)

Figure 9: Non-uniform network density

Address

Frequency

X(m)

Nodes/m2

Y (m) X(m)

Average address size (bits)

Y (m)

121

goodelle
Oval

- 15 -

We observe that the average address size at the level with . = 10 corresponds to 4.41 as in the uniform density case. For the

other regions, we can look at the value of . in the locality of a node and pick the corresponding curve from figure 8. The average

occurrence frequency of each address together with the codeword size of that address (given in table 1) allows us to predict the

performance of figure 9 in these other regions as well. This and other simulations we ran, show that the address size depends

only on the density in “the locality of a node”, corresponding roughly to circle with radius 3R.

Remember that the address representation of table 1 optimized for . = 10. In the other regions with higher or lower values, this

representation is no longer optimal. A great benefit of our encoded scheme is that it is scalable, such that all addresses can be

represented no matter what. However, in the case of the fixed size scheme, the address field would be selected based on the

expected maximum value of . , with some margin. If locally the density is higher, this size can turn out to be insufficient to

represent all addresses, causing major problems.

How can our encoded dynamic addressing scheme be used in practice? Typical scenarios are likely to exhibit non-uniform

network densities, which are sufficiently smooth (i.e. without abrupt transitions). If we are able to estimate the expected node

densities before the network deployment, we can predict the behavior of any address encoding choice based on the curves of

figure 8, as explained before. By taking a weighted average, we can choose the optimal encoding. If we do not have such

reasonable estimate on the node densities, we simply guess a good encoding scheme. Any encoding, optimal or not, is always

able to represent all possible addresses. Before deployment of the network, the encoding scheme is hard-coded into all the

nodes, as it needs to be network wide consistent. This option is most likely superior to executing a network wide “consensus”

algorithm after the address selection phase.

2. Random Packet Losses

We analyze the effects of random packet losses by assuming that each packet has a probability Pdrop of not reaching a

receiving node. This procedure models losses due to MAC congestion, problems in the wireless link (fading, shadowing, noise,

jamming) or any other source.

Figure 10a depicts simulation results for different loss probabilities. It is clear that packet losses up to 10% have almost no

effect on the performance of our algorithm in terms of final addresses chosen. It is therefore very resilient against these

degradations for typical operating conditions. Another aspect worth investigating is the convergence time of our scheme, i.e. how

long it takes until every node has a valid address. Simulations show that this aspect is independent of all the parameters

discussed so far. Specifically, convergence occurs one cycle after the last node is created (in fact, each node acquires a valid

address one cycle after its creation). However, this changes when random packet losses are included. Figure 10b plots the

interval between the time the last node boots and the time that all nodes have acquired a valid address.

122

goodelle
Oval

- 16 -

Address

Frequency

Pdrop

Convergence time (s)

(a) (b)

Figure 10: Effects of packet losses (. = 10)

3. Unidirectionality

As explained in section III, our algorithm is specifically designed to accommodate both unidirectional and bi-directional links. All

simulations up until now only included bi-directional links. Figure 11 illustrates the impact of having unidirectional links. The

transmission range R of each node is now chosen uniformly random in an interval [R - W/2 , R + W/2]. By increasing W, the

fraction of unidirectional links increases (from 0% to around 50% for W from 0 to 20). We observe that the performance degrades

with increasing W. For all our simulations, we have also verified that the assigned addresses indeed satisfy lemma 1.

Figure 11: Performance with bi- and unidirectional links (. = 10)

Address

Frequency

123

goodelle
Oval

- 17 -

VII. COMPARISON BETWEEN ADDRESSING SCHEMES

1. Scalability of Address Representations

The performance of our encoded address scheme depends on curves such as those of figure 8. Our simulations (which are not

included here due to space limitations) show that these curves are virtually independent of the network size. The reason is the fact

that the address assignment is basically dictated by the connectivity in the locality of the nodes. However, edge effects change

this statement slightly. Our simulations show, however, that the encoded address representation scales perfectly with N when

these edge effects are disregarded. The representation with a fixed size address field does not scale well. This is due to the

fact that when the network size increases, it is more likely that at least one node has a higher degree (and thus needs at least that

many addresses for its neighbors).

Figure 12: Comparison between fixed and encoded address representation

Figure 12 compares the performance of the two address representations. Both reuse addresses spatially, but the way they are

represented differs. It is clear that the encoded scheme has superior scaling properties. Furthermore, for most of the network

sizes of interest, the encoded scheme is preferable to the fixed size one. The steep dotted curve represents the address size

that would be needed for a network-wide unique ID, which is clearly undesirable.

2. Overall Comparison

When comparing MAC addressing alternatives for sensor networks, scalability is a key issue, which consists of two elements:

1. When the assignment of addresses is static (i.e. before deployment), there is no true scaling issue. Dynamic address

assignment protocols, on the other hand, can be centralized or distributed, where only distributed ones scale well.

Average address size (bits)

. =10

. =5

. =15

. =20

N

124

goodelle
Oval

- 18 -

2. The second aspect is address size. Without spatial reuse, scaling is very poor. On the other hand, scaling is perfect when

encoding spatially reused addresses (see section VII.1). This is not true anymore when representing these addresses in a

fixed size field.

Table 5 compares different approaches for N = 10,000 and . = 10. The ‘address selection type’ and ‘address size scalability’

reflect the two elements of scaling respectively. A globally unique ID would be prohibitively long (but independent of the network

size, thus having perfect ‘address size scalability’). Alternatively, a network wide unique ID can be allocated when the network is

deployed. This option scales only logarithmically with the network size. Our first new scheme, called fixed size dynamic, reuses

addresses spatially, but still represents them in a fixed size field. It does not exhibit perfect address size scalability. Addresses can

be assigned with a centralized or a distributed algorithm, where the last one is probably preferable. Our second scheme, called

encoded dynamic, achieves perfect scaling by address encoding and its distributed nature (although in theory, a centralized

algorithm is possible). It also results in smaller addresses for typical network setups.

Scheme
Address

selection type

Av. size

(bits)

Address size

scalability

Globally unique Manufacturing 128 +

Network wide unique Deployment 14 −

Fixed size dynamic Centr. / Distr. 4.7 ±

Encoded dynamic Distributed 4.4 +

Table 5: Comparison of addressing schemes

VIII. CONCLUSIONS

In sensor networks, the dominant traffic typically consists of packets with a small payload and a short destination name

attribute. In this case, MAC addresses contribute a considerable packet header overhead. However, they cannot be simply

omitted, as their functionality is needed to discern intended from non-intended receivers. We have tackled to the problem of

limiting this MAC address overhead, thereby reducing the number of bits that need to be transmitted. As every bit saved relaxes

the demands on the node’s energy resources, this scheme eventually targets increasing the network operation lifetime. We

propose a dynamic addressing scheme, which is viable when the network dynamism is low. This is the case for sensor networks

with immobile nodes, but where node failures can occur. In this paper, we have presented an address assignment protocol that

1. is fully distributed,

2. spatially reuses addresses,

3. encodes the addresses using prefix codes.

Our schemes

125

goodelle
Oval

- 19 -

Our scheme scales very well with the size of the network, because of both the distributed nature of the algorithm (which relies

only on local message exchanges) and the address encoding. Both the scalability and small average address size make our

scheme compare favorably to other options. We have also illustrated that the protocol is robust in the presence of packet losses

and unidirectional links.

In our future work, we will look at the relationship between encoded addressing and header compression [24]. Header

compression has thus far been considered only for point-to-point links, but to be useful for MAC addresses we need to take into

account the inherent broadcast functionality. In this case, loosing synchronization is compounded between the different receivers,

thereby limiting the compression gain. In any case, header compression is orthogonal to our scheme and their interaction seems

an interesting topic for future research.

REFERENCES

[1] Ward, A., Jones, A., Hopper, A., “A new location technique for the active office,” IEEE Personal Communications Magazine,

Vol.4, No.5, pp. 42-47, October 1997.

[2] Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G., “Protocols for self-organization of a wireless sensor network,” IEEE Personal

Communications Magazine, Vol.7, No.5, pp. 16-27, Oct. 2000.

[3] Saffo, P., “Sensors: the next wave of innovation,” Communications of the ACM, Vol.40, No.2, pp. 92-97, Feb. 1997.

[4] Pottie, G., “Hierarchical information processing in distributed Sensor networks,” Proceedings of ISIT’98 Conference,

Cambridge, MA, pp. 163, August 1998.

[5] Rabiner Heinzelman, W., Kulik, J., Balakrishnan, H., “Adaptive protocols for information dissemination in wireless sensor

networks,” Proceedings ACM/IEEE MobiCom’99, Seattle, WA, pp. 174-185, August 1999.

[6] Estrin, D., Govindan, R., “Next century challenges: scalable coordination in sensor networks,” Proceedings of ACM/IEEE

MobiCom’99, Seattle, WA, pp. 263-270, August 1999.

[7] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilly, J., “The design and implementation of an intentional naming

system,” Operating Systems Review, Vol.33, No.5, pp.186-201, December 1999.

[8] Navas, J., Imielinski, T., “GeoCast-geographic addressing and routing,” Proceedings of ACM/IEEE MobiCom '97, Budapest,

Hungary, pp. 66-76, September 1997.

[9] Elson, J., Estrin, D., “Random, Ephemeral Transaction Identifiers in Dynamic Sensor Networks,” to appear in ICDCS’01,

Phoenix, AZ, April 2001.

[10] Kahn, J., Katz, R., Pister, K., “Mobile Networking for Smart Dust”, Proceedings of ACM/IEEE MobiCom’99, Seattle, WA,

August, 1999.

[11] Kumar, S., “DARPA Sensor Information Technology (SensIT) Project,” http://www.darpa.mil/ito/research/sensit/.

[12] Bharghavan, V., “A dynamic addressing scheme for wireless media access,” Proceedings of IEEE ICC '95, Seattle, WA,

pp. 756-760, June 1995.

[13] Ramanathan, S., “A unified framework and algorithm for (T/F/C)DMA channel assignment in wireless networks,”

Proceedings of IEEE INFOCOM '97, Kobe, Japan, pp. 900-907, April 1997.

126

goodelle
Oval

- 20 -

[14] Ephremides, A, Truong, T., “Distributed algorithm for efficient and interference-free broadcasting in radio networks,”

Proceedings of IEEE INFOCOM '88, New Orleans, LA, pp. 1119-1124, March 1988.

[15] Cidon, I., Sidi, M., “Distributed assignment algorithms for multihop packet radio networks,” IEEE Transactions on

Computers, Vol.38, No.10, pp. 1353-1361, October 1989.

[16] Hu, L., “Distributed Code Assignments for CDMA Packet Radio Networks,” IEEE/ACM Transactions on Networking, Vol.1,

No.6, December 1993.

[17] Bertossi, A.A., Bonuccelli, M.A., “Code assignment for hidden terminal interference avoidance in multihop packet radio

networks,” IEEE INFOCOM '92, Florence, Italy, pp. 701-709, May 1992.

[18] Rockwell Science Center, “Wireless Integrated Network Systems,” http://wins.rsc.rockwell.com/ .

[19] MIT, “∝AMPS Project,” http://www-mtl.mit.edu/ research/icsystems/ uamps/.

[20] Cover, T., Thomas, J., “Elements of Information Theory,” Wiley Series in Telecommunications, 1991.

[21] Bagrodia, R., Meyer, R., Takai, M., Chan, Y.A., Zeng, X., Marting, J., Song, H.Y., “Parsec: a parallel simulation environment

for complex systems,” Computer, Vol.31, No.10, pp. 77-85, October 1998.

[22] “ASH Transceiver Designer’s Guide,” http://www.rfm.com.

[23] “Intel® StrongARM SA-1100 Microprocessor for Portable Applications Data Sheet,” http//www.arm.com.

[24] Giovanardi, A., Mazzini, G., Rossi, M., Zorzi, M., “Improved Header Compression for TCP/IP Over Wireless Links,”

Electronic Letters, Vol. 36, No. 23, November 2000.

[25] Sensoria Corporation, http://www.sensoria.com/.

127

goodelle
Oval

INTRODUCTION
Self-configuring wireless sensor networks can be

invaluable in many civil and military applications for
collecting, processing, and disseminating wide ranges of
complex environmental data. They have therefore,
attracted considerable research attention in the last few
years. The WINS [1] and SmartDust [2] projects for
instance, aim to integrate sensing, computing, and
wireless communication capabilities into a small form
factor to enable low-cost production of these tiny nodes
in large numbers. Several other groups are investigating
efficient hardware/software system architectures, signal
processing algorithms, and network protocols for
wireless sensor networks [3], [4], [5].

Sensor nodes are battery-driven, and hence operate on
an extremely frugal energy budget. Further, they must
have a lifetime on the order of months to years, since
battery replacement is not an option for networks with
thousands of physically embedded nodes. In some cases,
these networks may be required to operate solely on
energy scavenged from the environment through
seismic, photovoltaic, or thermal conversion. This
transforms energy consumption into the most important
factor that determines sensor node lifetime.

Conventional low-power design techniques [6] and
hardware architectures only provide point solutions
which are insufficient for these highly energy
constrained systems. Energy optimization, in the case of
sensor networks, is much more complex, since it
involves not only reducing the energy consumption of a
single sensor node, but also maximizing the lifetime of
an entire network. The network lifetime can be
maximized only by incorporating energy-awareness into
every stage of wireless sensor network design and
operation, thus empowering the system with the ability
to make dynamic tradeoffs between energy
consumption, system performance, and operational
fidelity. This new networking paradigm, with its extreme
focus on energy efficiency, poses several system and
network design challenges that need to be overcome to
fully realize the potential of the wireless sensor systems.

A quite representative application in wireless sensor
networks is event tracking, which has widespread use in
applications such as security surveillance and wildlife
habitat monitoring. Tracking involves a significant
amount of collaboration between individual sensors to
perform complex signal processing algorithms such as
Kalman Filtering, Bayesian Data Fusion, and Coherent
Beamforming. This collaborative signal processing

nature of sensor networks offers significant opportunities
for energy management. For example, just the decision
of whether to do the collaborative signal processing at
the user end-point or somewhere inside the network has
significant implication on energy and lifetime. We will
use tracking as the driver to illustrate many of the
techniques presented in this paper.

PAPER OVERVIEW

This paper describes architectural and algorithmic
approaches that designers can use to enhance the energy
awareness of wireless sensor networks. The paper starts
off with an analysis of the power consumption
characteristics of typical sensor node architectures, and
identifies the various factors that affect system lifetime.
We then present a suite of techniques that perform
aggressive energy optimization while targeting all stages
of sensor network design, from individual nodes to the
entire network. Maximizing network lifetime requires
the use of a well-structured design methodology, which
enables energy aware design, and operation of all aspects
of the sensor network, from the underlying hardware
platform, to the application software and network
protocols. Adopting such a holistic approach ensures that
energy awareness is incorporated not only into
individual sensor nodes, but also into groups of
communicating nodes, and the entire sensor network. By
following an energy-aware design methodology based
on techniques such as in this paper, designers can
enhance network lifetime by orders of magnitude.

WHERE DOES THE POWER GO?
The first step in designing energy aware sensor

systems involves analyzing the power dissipation
characteristics of a wireless sensor node. Systematic
power analysis of a sensor node is extremely important
to identify power bottlenecks in the system, which can
then be the target of aggressive optimization. We
analyze two popular sensor nodes from a power
consumption perspective, and discuss how decisions
taken during node design can significantly impact the
system energy consumption.
The system architecture of a canonical wireless sensor
node is shown in Figure 1. The node is comprised of
four subsystems: (i) a computing subsystem consisting
of a microprocessor or microcontroller, (ii) a
communication subsystem consisting of a short range
radio for wireless communication, (iii) a sensing
subsystem that links the node to the physical world and

Energy Aware Wireless Sensor Networks
Vijay Raghunathan, Curt Schurgers, Sung Park, and Mani B. Srivastava

Department of Electrical Engineering, University of California, Los Angeles, CA 90095.

128

goodelle
Text Box
Appendix G:

consists of a group of sensors and actuators, and (iv) a
power supply subsystem, which houses the battery and
the DC-DC converter, and powers the rest of the node.
The sensor node shown in Figure 1 is representative of
commonly used node architectures such as [1], [2].

MICRO CONTROLLER UNIT (MCU)
Providing intelligence to the sensor node, the MCU is
responsible for control of the sensors, and execution of
communication protocols and signal processing
algorithms on the gathered sensor data. Commonly used
MCUs are Intel's StrongARM microprocessor and
Atmel's AVR microcontroller. The power-performance
characteristics of MCUs have been studied extensively,
and several techniques have been proposed to estimate
the power consumption of these embedded processors
[7], [8]. While the choice of MCU is dictated by the
required performance levels, it can also significantly
impact the node's power dissipation characteristics. For
example, the StrongARM microprocessor from Intel,
used in high end sensor nodes, consumes around
400mW of power while executing instructions, whereas
the ATmega103L AVR microcontroller from Atmel
consumes only around 16.5mW, but provides much
lower performance. Thus, the choice of MCU should be
dictated by the application scenario, to achieve a close
match between the performance level offered by the
MCU, and that demanded by the application. Further,
MCUs usually support various operating modes,
including Active, Idle, and Sleep modes, for power
management purposes. Each mode is characterized by a
different amount of power consumption. For example,
the StrongARM consumes 50mW of power in the Idle
mode, and just 0.16mW in the Sleep mode. However,
transitioning between operating modes involves a power
and latency overhead. Thus, the power consumption
levels of the various modes, the transition costs, and the
amount of time spent by the MCU in each mode, all
have a significant bearing on the total energy
consumption (battery lifetime) of the sensor node.

RADIO

The sensor node’s radio enables wireless
communication with neighboring nodes and the outside
world. There are several factors that affect the power
consumption characteristics of a radio, including the
type of modulation scheme used, data rate, transmit
power (determined by the transmission distance), and the
operational duty cycle. In general, radios can operate in
four distinct modes of operation, namely Transmit,
Receive, Idle, and Sleep modes. An important
observation in the case of most radios is that, operating
in Idle mode results in significantly high power
consumption, almost equal to the power consumed in the

Receive mode [11]. Thus, it is important to completely
shutdown the radio rather than transitioning to Idle
mode, when it is not transmitting or receiving data.
Another influencing factor is that, as the radio's
operating mode changes, the transient activity in the
radio electronics causes a significant amount of power
dissipation. For example, when the radio switches from
sleep mode to transmit mode to send a packet, a
significant amount of power is consumed for starting up
the transmitter itself [9].

SENSORS

Sensor transducers translate physical phenomena to
electrical signals, and can be classified as either analog
or digital devices depending on the type of output they
produce. There exist a diversity of sensors that measure
environmental parameters such as temperature, light
intensity, sound, magnetic fields, image etc. There are
several sources of power consumption in a sensor,
including (i) signal sampling and conversion of physical
signals to electrical ones, (ii) signal conditioning, and
(iii) analog to digital conversion. Given the diversity of
sensors there is no typical power consumption number.
In general, however, passive sensors such as
temperature, seismic etc., consume negligible power
relative to other components of sensor node. However,
active sensors such as sonar rangers, array sensors such
as imagers, and narrow field-of-view sensors that require
repositioning such as cameras with pan-zoom-tilt can be
large consumers of power.

POWER ANALYSIS OF SENSOR NODES

Table I shows the power consumption characteristics
of Rockwell’s WINS node [10], which represents a high-
end sensor node, and is equipped with a powerful
StrongARM SA-1100 processor from Intel, a radio
module from Conexant Systems, and several sensors
including acoustic and seismic ones. Table II gives the
characteristics of the MEDUSA-II, an experimental
sensor node developed at the Networked and Embedded
Systems Lab, UCLA. The MEDUSA node, designed to
be ultra low power, is a low-end sensor node similar to
the COTS Motes developed as part of the SmartDust
project [2]. It is equipped with an AVR microcontroller
from ATMEL, a low-end RFM radio module, and a few
sensors. As can be seen from the tables, the power
dissipation characteristics of the two nodes differ
significantly. There are several inferences that can be
drawn from these tables:

 Using low-power components and trading off
unnecessary performance for power savings during
node design, can have a significant impact, up to a
few orders of magnitude.

129

 The node power consumption is strongly dependent
on the operating modes of the components. For
example, as Table I shows, the WINS node
consumes only around one sixth the power when the
MCU is in Sleep mode, than when it is in Active
mode.

 Due to extremely small transmission distances, the
power consumed while receiving data can often be
greater than the power consumed while transmitting
packets, as is evident from Figure 2. Thus,
conventional network protocols which usually
assume the receive power to be negligible, are no
longer efficient for sensor networks, and customized
protocols which explicitly account for receive power
have to be developed instead.

 The power consumed by the node with the radio in
Idle mode is approximately the same with the radio
in Receive mode. Thus, operating the radio in Idle
mode does not provide any advantage in terms of
power. Previously proposed network protocols have
often ignored this fact, leading to fallacious savings
in power consumption, as pointed out in [11].
Therefore, the radio should be completely shut off
whenever possible, to obtain energy savings.

BATTERY ISSUES
The battery supplies power to the complete sensor node,
and hence plays a vital role in determining sensor node
lifetime. Batteries are complex devices whose operation
depends on many factors including battery dimensions,
type of electrode material used, and diffusion rate of the
active materials in the electrolyte. In addition, there can
be several non-idealities that can creep in during battery
operation, which adversely affect system lifetime. We
describe the various battery non-idealities, and discuss
system level design approaches that can be used to
prolong battery lifetime.

Rated capacity effect

The most important factor that affects battery lifetime
is the discharge rate or the amount of current drawn from
the battery. Every battery has a rated current capacity,
specified by the manufacturer. Drawing higher current
than the rated value leads to a significant reduction in
battery life. This is because, if a high current is drawn
from the battery, the rate at which active ingredients
diffuse through the electrolyte falls behind the rate at
which they are consumed at the electrodes. If the high
discharge rate is maintained for a long time, the
electrodes run out of active materials, resulting in battery
death even though active ingredients are still present in
the electrolyte. Hence, to avoid battery life degradation,
the amount of current drawn from the battery should be
kept under tight check. Unfortunately, depending on the

battery type (Lithium Ion, NiMH, NiCd, Alkaline, etc.),
the minimum required current consumption of sensor
nodes often exceeds the rated current capacity, leading to
sub-optimal battery lifetime.

Relaxation effect

The effect of high discharge rates can be mitigated to a
certain extent through battery relaxation. If the discharge
current from the battery is cut off or reduced, the
diffusion and transport rate of active materials catches
up with the depletion caused by the discharge. This
phenomenon is called the relaxation effect, and enables
the battery to recover a portion of its lost capacity.
Battery lifetime can be significantly increased if the
system is operated such that the current drawn from the
battery is frequently reduced to very low values, or is
completely shut off [12].

DC-DC CONVERTER

The DC-DC converter is responsible for providing a
constant supply voltage to the rest of the sensor node
while utilizing the complete capacity of the battery. The
efficiency factor associated with the converter plays a
big role in determining battery lifetime [13]. A low
efficiency factor leads to significant energy loss in the
converter, reducing the amount of energy available to
other sensor node components. Also, the voltage level
across the battery terminals constantly decreases as it
gets discharged. The converter therefore draws
increasing amounts of current from the battery to
maintain a constant supply voltage to the sensor node.
As a result, the current drawn from the battery becomes
progressively higher than the current that actually gets
supplied to the rest of the sensor node. This leads to
depletion in battery life due to the rated capacity effect,
as explained earlier. Figure 3 shows the difference in
current drawn from the battery and the current delivered
to the sensor node for a Lithium-Ion coin cell battery.

NODE LEVEL ENERGY
OPTIMIZATION

Having studied the power dissipation characteristics of
wireless sensor nodes, we now focus our attention to the
issue of minimizing the power consumed by these nodes.
As a first step towards incorporating energy awareness
into the network, it is necessary to develop
hardware/software design methodologies and system
architectures that enable energy-aware design and
operation of individual sensor nodes in the network.

POWER-AWARE COMPUTING

Advances in low-power circuit and system design [6]
have resulted in the development of several ultra low

130

power microprocessors, and microcontrollers. In
addition to using low-power hardware components
during sensor node design, operating the various system
resources in a power-aware manner through the use of
dynamic power management (DPM) [14] can reduce
energy consumption further, increasing battery lifetime.
A commonly used power management scheme is based
on idle component shutdown, in which the sensor node,
or parts of it, is shutdown or sent into one of several
low-power states if no interesting events occur. Such
event-driven power management is extremely crucial in
maximizing node lifetime. The core issue in shutdown
based DPM is deciding the state transition policy [14],
since different states are characterized by different
amounts of power consumption, and state transitions
have a non-negligible power and time overhead.

While shutdown techniques save energy by turning off
idle components, additional energy savings are possible
in active state through the use of dynamic voltage
scaling (DVS) [15]. Most microprocessor-based systems
have a time varying computational load, and hence peak
system performance is not always required. DVS
exploits this fact by dynamically adapting the processor's
supply voltage and operating frequency to just meet the
instantaneous processing requirement, thus trading off
unutilized performance for energy savings. DVS based
power management, when applicable, has been shown to
have significantly higher energy efficiency compared to
shutdown based power management due to the convex
nature of the energy- speed curve [15]. Several modern
processors such as Intel's StrongARM and Transmeta's
Crusoe support scaling of voltage and frequency, thus
providing control knobs for energy-performance
management.

For example, consider the target-tracking application
discussed earlier. The duration of node shutdown can be
used as a control knob to trade off tracking fidelity
against energy. A low operational duty cycle for a node
reduces energy consumption at the cost of a few missed
detections. Further, the target update rate varies,
depending on the Quality of Service requirements of the
user. A low update rate implies more available latency to
process each sensor data sample, which can be exploited
to reduce energy through the use of DVS.

ENERGY AWARE SOFTWARE

Despite the higher energy efficiency of application
specific hardware platforms, the advantage of flexibility
offered by microprocessor and DSP based systems has
resulted in the increasing use of programmable solutions
during system design. Sensor network lifetime can be
significantly enhanced if the system software, including
the operating system (OS), application layer, and
network protocols are all designed to be energy aware.

The OS is ideally poised to implement shutdown-
based and DVS-based power management policies, since
it has global knowledge of the performance and fidelity
requirements of all the applications, and can directly
control the underlying hardware resources, fine tuning
the available performance-energy control knobs. At the
core of the OS is a task scheduler, which is responsible
for scheduling a given set of tasks to run on the system
while ensuring that timing constraints are satisfied.
System lifetime can be increased considerably by
incorporating energy awareness into the task scheduling
process [16], [17].

The energy aware real-time scheduling algorithm
proposed in [16] exploits two observations about the
operating scenario of wireless systems, to provide an
adaptive power vs. fidelity tradeoff. The first observation
is that these systems are inherently designed to operate
resiliently in the presence of varying fidelity in the form
of data losses, and errors over wireless links. This ability
to adapt to changing fidelity is used to trade off against
energy. Second, these systems exhibit significant
correlated variations in computation and communication
processing load due to underlying time-varying physical
phenomena. This observation is exploited to proactively
manage energy resources by predicting processing
requirements. The voltage is set according to predicted
computation requirements of individual task instances,
and adaptive feedback control is used to keep the system
fidelity (timing violations) within specifications.

The energy-fidelity tradeoff can be exploited further
by designing the application layer to be energy scalable.
This can be achieved by transforming application
software such that the most significant computations are
performed first. Thus, terminating the algorithm
prematurely due to energy constraints, does not impact
the result severely. For example, the target tracking
application described earlier involves the extensive use
of signal filtering algorithms such as Kalman filtering.
Transforming the filtering algorithms to be energy
scalable, trades off computational precision (and hence,
tracking precision) for energy consumption. Several
transforms to enhance the energy scalability of DSP
algorithms are presented in [18].

POWER MANAGEMENT OF RADIOS

While power management of embedded processors has
been studied extensively, incorporating power awareness
into radio subsystems has remained relatively
unexplored. Power management of radios is extremely
important since wireless communication is a major
power consumer during system operation. One way of
characterizing the importance of this problem is in terms
of the ratio of the energy spent in sending one bit to the
energy spent in executing one instruction. While it is not

131

quite fair to compare this ratio across nodes without
normalizing for transmission range, bit error probability,
and the complexity of instruction (8-bit vs. 32-bit), this
ratio is nevertheless useful. Example values are from
1500 to 2700 for Rockwell’s WIN nodes, 220 to 2900
for the MEDUSA II nodes, and is around 1400 for the
WINS NG 2.0 nodes from the Sensoria Corporation that
are used by many researchers.

The power consumed by a radio has two main
components to it, an RF component that depends on the
transmission distance and modulation parameters, and an
electronics component that accounts for the power
consumed by the circuitry that performs frequency
synthesis, filtering, up-converting, etc. Radio power
management is a non-trivial problem, particularly since
the well-understood techniques of processor power
management may not be directly applicable. For
example, techniques such as dynamic voltage and
frequency scaling reduce processor energy consumption
at the cost of an increase in the latency of computation.
However, in the case of radios, the electronics power can
be comparable to the RF component (which varies with
the transmission distance). Therefore, slowing down the
radio may actually lead to an increase in energy
consumption. Other architecture specific overheads like
the startup cost of the radio can be quite significant [9],
making power management of radios a complex
problem. The various tradeoffs involved in incorporating
energy awareness into wireless communication will be
discussed further in the next section.

ENERGY AWARE PACKET FORWARDING

In addition to sensing and communicating its own data
to other nodes, a sensor node also acts as a router,
forwarding packets meant for other nodes. In fact, for
typical sensor network scenarios, a large portion (around
65%) of all packets received by a sensor node need to be
forwarded to other destinations [19]. Typical sensor
node architectures implement most of the protocol
processing functionality on the main computing engine.
Hence, every received packet, irrespective of its final
destination, travels all the way to the computing
subsystem and gets processed, resulting in a high energy
overhead. The use of intelligent radio hardware, as
shown in Figure 4, enables packets that need to be
forwarded to be identified and re-directed from the
communication subsystem itself, allowing the computing
subsystem to remain in Sleep mode, saving energy [19].

ENERGY AWARE WIRELESS
COMMUNICATION

While power management of individual sensor nodes
reduces energy consumption, it is important for the

communication between nodes to be conducted in an
energy efficient manner as well. Since the wireless
transmission of data accounts for a major portion of the
total energy consumption, power management decisions
that take into account the effect of inter-node
communication yield significantly higher energy
savings. Further, incorporating power management into
the communication process enables the diffusion of
energy awareness from an individual sensor node to a
group of communicating nodes, thereby enhancing the
lifetime of entire regions of the network. To achieve
power-aware communication it is necessary to identify
and exploit the various performance-energy trade-off
knobs that exist in the communication subsystem.

MODULATION SCHEMES

Besides the hardware architecture itself, the specific
radio technology used in the wireless link between
sensor nodes plays an important role in energy
considerations. The choice of modulation scheme greatly
influences the overall energy versus fidelity and latency
tradeoff that is inherent to a wireless communication
link. Equation (1) expresses the energy cost for
transmitting one bit of information, as a function of the
packet payload size L, the header size H, the fixed
overhead Estart associated with the radio startup transient,
and the symbol rate RS for an M-ary modulation scheme
[9], [20]. Pelec represents the power consumption of the
electronic circuitry for frequency synthesis, filtering,
modulating, upconverting, etc. The power delivered by
the power amplifier, PRF, needs to go up as M increases,
in order to maintain the same error rate.

)1(*
log*

)(

2 L

H

MR

MPP

L

E
Ebit

S

RFelecstart +++= (1)

Figure 5 plots the communication energy per bit as a

function of the packet size and the modulation level M.
This curve was obtained using the parameters given in
Table III, which are representative for sensor networks,
and choosing Quadrature Amplitude Modulation (QAM)
[9], [20]. The markers in Figure 5 indicate the optimal
modulation setting for each packet size, which is
independent of L. In fact, this optimal modulation level
is relatively high, close to 16-QAM for the values
specified in Table III. Higher modulation levels might be
unrealistic in low-end wireless systems, such as sensor
nodes. In these scenarios, a practical guideline for saving
energy is to transmit as fast as possible, at the optimal
setting [9]. However, if for reasons of peak-throughput,
higher modulation levels than the optimal one need to be
provided, adaptively changing the modulation level can
lower the overall energy consumption. When the

132

instantaneous traffic load is lower than the peak value,
transmissions can be slowed down, possibly all the way
to the optimal operating point. This technique of
dynamically adapting the modulation level to match the
instantaneous traffic load, as part of the radio power
management, is called modulation scaling [20]. It is
worth noting that dynamic modulation scaling is the
exact counterpart of dynamic voltage scaling, which has
been shown to be extremely effective for processor
power management, as described earlier.

The above conclusions are expected to hold for other
implementations of sensor network transceivers as well.
Furthermore, since the startup cost is significant in most
radio architectures [9], it is beneficial to operate with as
large a packet size as possible, since it amortizes this
fixed overhead over more bits. However, aggregating
more data into a single packet has the downside of
increasing the overall latency of information exchange.

The discussion up until now has focused on the links
between two sensor nodes, which are characterized by
their short distance. However, when external users
interact with the network, they often times do so via
specialized gateway nodes [22], [23]. These gateway
nodes offer long-haul communication services, and are
therefore in a different regime where PRF dominates Pelec.
In this case, the optimal M shifts to the lowest possible
value, such that it becomes beneficial to transmit as slow
as possible, subject to the traffic load. In this regime,
modulation scaling is clearly very effective [20].

COORDINATED POWER MANAGEMENT TO EXPLOIT
COMPUTATION COMMUNICATION TRADEOFF

Sensor networks involve several node-level and
network-wide computation-communication tradeoffs,
which can be exploited for energy management. At the
individual node level, power management techniques
such as DVS and modulation scaling reduce the energy
consumption at the cost of increased latency. Since both
the computation and communication subsystems take
from the total acceptable latency budget, exploiting the
inherent synergy between them to perform coordinated
power management will result in far lower energy
consumption. For example, the relative split up of the
available latency for the purposes of dynamic voltage
scaling and dynamic modulation scaling significantly
impacts the energy savings obtained. Figure 6 shows a
system power management module that is integrated into
the OS, and performs coordinated power management of
the computing, communication and sensing subsystems.

The computation-communication tradeoff manifests
itself in a powerful way due to the distributed nature of
these sensor networks. The network's inherent capability
for parallel processing offers further energy optimization
potential. Distributing an algorithm's computation

among multiple sensor nodes enables the computation to
be performed in parallel. The increased allowable
latency per computation enables the use of voltage
scaling, or other energy-latency tradeoff techniques.
Distributed computing algorithms however demand
more inter-node collaboration, thereby increasing the
amount of communication that needs to take place.

These computation-communication tradeoffs extend
beyond individual nodes to the network level too. As we
will discuss in the next section, the high redundancy
present in the data gathering process, enables the use of
data combining techniques to reduce the amount of data
to be communicated, at the expense of extra computation
at individual nodes to perform data aggregation.

LINK LAYER OPTIMIZATIONS

While exploring energy-performance-quality tradeoffs,
reliability constraints also have to be considered, which
are related to the interplay of communication packet
losses and sensor data compression. Reliability decisions
are usually taken at the link layer, which is responsible
for some form of error detection and correction.
Adaptive error correction schemes were proposed in [24]
to reduce energy consumption, while maintaining the bit
error rate (BER) specifications of the user. For a given
BER requirement, error control schemes reduce the
transmit power required to send a packet, at the cost of
additional processing power at the transmitter and
receiver. This is especially useful for long-distance
transmissions to gateway nodes, which involve large
transmit power. Link layer techniques also play an
indirect role in reducing energy consumption. The use of
a good error control scheme minimizes the number of
times a packet retransmissions, thus reducing the power
consumed at the transmitter as well as the receiver.

NETWORK-WIDE ENERGY
OPTIMIZATION

Incorporating energy awareness into individual nodes
and pairs of communicating nodes alone does not solve
the energy problem in sensor networks. The network as a
whole should be energy-aware, for which the network-
level global decisions should be energy-aware.

TRAFFIC DISTRIBUTION

At the highest level of sensor network, the issue of
how traffic is forwarded from the data source to the data
sink arises. Data sinks typically are user nodes or
specialized gateways that connect the sensor network to
the outside world. One aspect of traffic forwarding is the
choice of an energy efficient multi-hop route between
source and destination. Several approaches have been

133

proposed [3], [23], [25] which aim at selecting a path
that minimizes the total energy consumption.

However, such a strategy does not always maximize
the network lifetime [26]. Consider the target-tracking
example again. While forwarding the gathered and
processed data to the gateway, it is desirable to avoid
routes through regions of the network that are running
low on energy resources, thus preserving them for
future, possibly critical detection and communication
tasks. For the same reason, it is in general, undesirable to
continuously forward traffic via the same path, even
though it minimizes the energy, up to the point where
the nodes on that path are depleted of energy, and the
network connectivity is compromised. It would, instead,
be preferable to spread the load more uniformly over the
network. This general guideline can increase the network
lifetime in typical scenarios, although this is not always
the case [26] as the optimal distribution of traffic load is
possible only when future network activity is known.

TOPOLOGY MANAGEMENT

The traffic distribution through appropriate routing
essentially exploits the macro-scale redundancy of
possible routes between source and destination.
However, on each route, there is also a micro-scale
redundancy of nodes that are essentially equivalent for
the multi-hop path. In typical deployment scenarios, a
dense network is required to ensure adequate coverage
of both the sensing and multi-hop routing functionality,
in addition to improving network fault-tolerance [11],
[27]. It is immediately apparent that there exist several
adaptive energy-fidelity tradeoffs here too. For example,
in target tracking, denser distributions of sensors lead to
increasingly precise tracking results. However, if
network lifetime is more critical than tracking precision,
tracking could be done using data samples from fewer
nodes. In addition to reducing the computational
complexity itself, this also reduces the communication
requirements of the non- participating nodes since they
no longer have to send in their data to be processed.

Despite the inherent node redundancy, these high
densities do not immediately result in an increased
network lifetime, as the radio energy consumption in
Idle mode does not differ much from that in Transmit or
Receive mode. Only by transitioning the radio to the
Sleep state can temporarily quiescent nodes conserve
battery energy. However, in this state, nodes cannot be
communicated with, and have effectively retracted from
the network, thereby changing the active topology. Thus,
the crucial issue is to intelligently manage the sleep state
transitions while providing robust undisturbed operation.

This reasoning is the foundation for the time slotted
MAC protocol for sensor networks in [22] where the
nodes only need to wake up during time slots that they

are assigned to, although this comes at the cost of
maintaining time synchronization. An alternative
approach advocates explicit node wake up via a separate,
but low-power paging channel. In addition, true
topology management explicitly leverages the fact that
in high node density several nodes can be considered
backups of each other with respect to traffic forwarding.
The GAF protocol [11] identifies equivalent nodes based
on their geographic location in a virtual grid such that
they replace each other directly and transparently in the
routing topology. In SPAN [27], a limited number of
coordinator nodes are elected to forward the bulk of the
traffic as a backbone within the ad-hoc network, while
other nodes can frequently transition to a sleep state.
Both GAF and SPAN are distributed protocols that
provision for periodic rotation of node functionality to
ensure fair energy consumption distribution. STEM [28]
goes beyond GAF and SPAN in improving the network
lifespan by exploiting the fact that most of the time the
network is only sensing its environment waiting for an
event to happen. By eliminating GAF and SPAN’s
restriction of network capacity preservation at all times,
STEM trades off an increased latency to set up a multi-
hop path to achieve much higher energy savings.

COMPUTATION COMMUNICATION TRADEOFFS

Intelligent routing protocols and topology management
ensure that the burden of forwarding traffic is distributed
between nodes in an energy-efficient, i.e., network
lifetime improving, fashion. Further enhancements are
possible by reducing the size of the packets that are
forwarded. As mentioned earlier, each node already
processes its sensor data internally to this end. Consider
the target tracking application. Due to high node
densities, a target is detected not only by a single node,
but also by an entire cloud of nearby nodes, leading to a
high degree of redundancy in the gathered data.
Combining the information from the nodes in this cloud
via in-network processing can both improve the
reliability of the detection event/data, and greatly reduce
the amount of traffic. One option is to combine the
sensor readings of different nodes in a coherent fashion
via beam-forming techniques [22]. Alternatively, non-
coherent combining, also known as data fusion or
aggregation, can be used, which does not require
synchronization, but is less powerful. Several
alternatives have been proposed to select the nodes that
perform the actual combining, such as winner election
[22], clustering [23], or traffic-steered [26]. These
techniques illustrate the effectiveness of exploiting
network wide computation-communication tradeoffs.

134

OVERHEAD REDUCTION

The sensor data packet payload can be quite compact
due to in-network processing, with reported packet
payloads as low as 8 to 16 bits [22]. Also, attribute
based naming and routing are being used [3], where the
more common attributes can be coded in fewer bits.
Short random identifiers have been proposed to replace
unique identifiers for end-to-end functions such as
fragmentation/reassembly. Spatial reuse, combined with
Huffman-coded representation, can significantly reduce
the size of MAC addresses compared to traditional
network-wide unique identifiers [21]. Packet headers
using attribute-based routing identifiers and encoded
reusable MAC addresses are very compact, of the order
of 10 bits. This reduction will become more important as
radios with smaller startup cost are developed [9].

CONCLUSIONS
Sensor networks have emerged as a revolutionary

technology for querying the physical world and hold
promise in a wide variety of applications. However, the
extremely energy constrained nature of these networks
necessitate that their design and operation be done in an
energy-aware manner, enabling the system to
dynamically make tradeoffs between performance,
fidelity, and energy consumption. We presented several
energy optimization and management techniques at
node, link, and network level, leveraging which can lead
to significant enhancement in sensor network lifetime.

ACKNOWLEDGEMENTS
This paper is based in part on research funded through

DARPA's PAC/C and SensIT programs under AFRL
contracts F30602-00-C-0154 and F30602-99-1-0529
respectively, and through NSF Grants ANI-0085773 and
MIPS-9733331. Any opinions, findings and conclusions
or recommendations expressed in this paper are those of
the author(s), and do not necessarily reflect the views of
DARPA, AFRL, or NSF. The authors would like to
acknowledge their colleagues at the Networked and
Embedded Systems Laboratory, UCLA for several
interesting and stimulating technical discussions.

REFERENCES
[1] Wireless Integrated Network Sensors, University of California, Los
Angeles. (http://www.janet.ucla.edu/WINS)
[2] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges:
mobile networking for smart dust”, in Proc. Mobicom, pp. 483-492, 1999.
[3] D. Estrin and R. Govindan, “Next century challenges: scalable
coordination in sensor networks”, in Proc. Mobicom, pp. 263-270, 1999.
[4] A. P. Chandrakasan, et al., “Design considerations for distributed
microsensor systems”, in Proc. CICC, 1999, pp. 279-286.
[5] J. Rabaey, et al., “PicoRadio supports ad hoc ultra low power wireless
networking”, in IEEE Computer, July 2000, pp. 42-48.

[6] A. P. Chandrakasan and R. W. Brodersen, Low Power CMOS Digital
Design, Kluwer Academic Publishers, Norwell, MA, 1996.
[7] V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee, “Instruction level power
analysis and optimization of software”, in Jrnl. VLSI Signal Processing,
Kluwer Academic Publishers, pp. 1-18, 1996.
[8] A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool for
software energy profiling'', in Proc. Design Automation Conf., 2001.
[9] A. Wang, S-H. Cho, C. G. Sodini, and A. P. Chandrakasan, “Energy-
efficient modulation and MAC for asymmetric microsensor systems”, in Proc.
ISLPED, 2001.
[10] WINS project, Rockwell Science Center, (http://wins..rsc.rockwell.com).
[11] Y. Xu, J. Heidemann and D. Estrin, “Geography-informed energy
conservation for ad hoc routing”, in Proc. Mobicom, 2001.
[12] C. F. Chiasserini and R. R. Rao, “Pulsed battery discharge in
communication devices”, in Proc. Mobicom, 1999.
[13] S. Park, A. Savvides, and M. Srivastava, “Battery capacity measurement
and analysis using lithium coin cell battery”, in Proc. ISLPED, 2001.
[14] L. Benini and G. DeMicheli, Dynamic Power Management: Design
Techniques & CAD Tools, Kluwer Academic Publishers, Norwell, MA, 1997.
[15] T. A. Pering, T. D. Burd, and R. W. Brodersen, “The simulation and
evaluation of dynamic voltage scaling algorithms”, in Proc. ISLPED, pp. 76-
81, 1998.
[16] V. Raghunathan, P. Spanos, and M. Srivastava, “Adaptive power-fidelity
in energy aware wireless embedded systems”, to be presented at IEEE Real
Time Systems Symposium, 2001.
[17] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy”, in Proc. Annual Symp. on Foundations of Computer Science,
pp.374-382, 1995.
[18] A. Sinha, A. Wang, and A. P. Chandrakasan, “Algorithmic transforms for
efficient energy scalable computation”, in Proc. ISLPED, 2000.
[19] V. Tsiatsis, S. Zimbeck, and M. Srivastava, “Architectural strategies for
energy efficient packet forwarding in wireless sensor networks”, in Proc.
ISLPED, 2001.
[20] C. Schurgers, O. Aberthorne, and M. Srivastava, “Modulation scaling for
energy aware communication systems”, in Proc. ISLPED, 2001.
[21] C. Schurgers, G. Kulkarni, and M. Srivastava, “Distributed assignment of
encoded MAC addresses in wireless sensor networks”, in Proc.MobiHoc,
2001.
[22] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, “Protocols for self-
organization of a wireless sensor network”, in IEEE Personal Comm.
Magazine, vol.7, no.5, pp. 16-27, Oct. 2000.
[23] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless sensor networks”, in Proc.
Hawaii Intl. Conf. on System Sciences, Hawaii, 2000.
[24] P. Lettieri, C. Fragouli, and M. Srivastava, “Low power error control for
wireless links”, in Proc. Mobicom, pp. 139-150, 1997.
[25] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless ad-
hoc networks”, in Proc. INFOCOM, 2000.
[26] C. Schurgers and M. Srivastava, “Energy efficient routing in sensor
networks”, in Proc. Milcom, 2001.
[27] B. Chen, K. Jamieson, H. Balakrishnan, and R Morris, “SPAN: An
energy-efficient coordination algorithm for topology maintenance in ad hoc
wireless networks, in Proc. Mobicom, 2001.
[28] C. Schurgers, V. Tsiatsis, and M. Srivastava, “STEM: Topology
management for energy efficient sensor networks,” To appear in the
Proceedings of the 2002 IEEE Aerospace Conference, March 2002.

135

B
A

T
T

E
R

Y

D
C

-D
C

SE
N

SO
R

S

A
D

C

MCU

MEMORY

R
A

D
IO

ALGORITHMS & PROTOCOLS

REAL-TIME OPERATING SYSTEM

Fig 1. System architecture of a typical wireless sensor node

136

8

10

12

14

16

18

20

1 2 3 4 5 6

Tx Power Level

C
o

n
su

m
ed

 P
o

w
er

 (
m

W
)

2.4kpbs OOK

2.4kbps ASK

19.2kbps OOK

19.2kbps ASK

Receive Mode

Fig. 2. Power consumption of an RFM radio in various modes of operation

137

Fig. 3. Current drawn from the battery (Chan 1) and current
supplied to the node (Chan 3)

138

Communication
Subsystem

Multihop aware
radio

Main Node

CPU Sensor

…zZZMultihop
Packet

Fig. 4. Energy-aware packet forwarding architecture

139

Fig. 5. Radio energy per bit as a function of packet size and
modulation level

140

Sensors RadioCPU

Operating System

Power Manager

Dynamic Voltage
Scaling

Coordinated Power Management

Scalable Signal
Processing

Dynamic Modulation
Scaling

Fig. 6. Coordinated power management at the node level to exploit
computation-communication tradeoffs

141

TABLE I

POWER ANALYSIS OF ROCKWELL’S WINS NODES

MCU
Mode

Sensor
Mode

Radio
Mode

Power
(mW)

Tx (Power: 36.3 mW) 1080.5
Tx (Power: 19.1 mW) 986.0
Tx (Power: 13.8 mW) 942.6
Tx (Power: 3.47 mW) 815.5
Tx (Power: 2.51 mW) 807.5
Tx (Power: 0.96 mW) 787.5
Tx (Power: 0.30 mW) 773.9

Active

On

Tx (Power: 0.12 mW) 771.1
Active On Rx 751.6
Active On Idle 727.5
Active On Sleep 416.3
Active On Removed 383.3
Sleep On Removed 64.0
Active Removed Removed 360.0

142

TABLE II

POWER ANALYSIS OF MEDUSA II NODES

MCU
Mode

Sensor
Mode

Radio
Mode

Mod.
Scheme

Data
Rate

Power
(mW)

Tx (Power: 0.7368 mW) OOK 2.4 kbps 24.58
Tx (Power: 0.0979 mW) OOK 2.4 kbps 19.24
Tx (Power: 0.7368 mW) OOK 19.2 kbps 25.37
Tx (Power: 0.0979 mW) OOK 19.2 kbps 20.05
Tx (Power: 0.7368 mW) ASK 2.4 kbps 26.55
Tx (Power: 0.0979 mW) ASK 2.4 kbps 21.26
Tx (Power: 0.7368 mW) ASK 19.2 kbps 27.46

Active

On

Tx (Power: 0.0979 mW) ASK 19.2 kbps 22.06
Active On Rx Any Any 22.20
Active On Idle Any Any 22.06
Active On Off Any Any 9.72

Idle On Off Any Any 5.92
Sleep Off Off Any Any 0.02

143

TABLE III

TYPICAL RADIO PARAMETERS FOR SENSOR NETWORKS

Estart 1∝J
Pelec 12mW
PRF 1mW for 4-QAM
RS 1 Mbaud
H 16 bits

144

STEM: Topology Management for Energy Efficient
Sensor Networks 12

 Curt Schurgers Vlasios Tsiatsis Mani B. Srivastava
University of California, Los Angeles University of California, Los Angeles University of California, Los Angeles
 Eng. IV Bldg., UCLA-EE Eng. IV Bldg., UCLA-EE Eng. IV Bldg., UCLA-EE
 Los Angeles, CA 90095 Los Angeles, CA 90095 Los Angeles, CA 90095
 1-310-206-4465 1-310-825-7707 1-310-267-2098
 curts@ee.ucla.edu tsiatsis@ee.ucla.edu mbs@ee.ucla.edu

0-7803-7231-X/01/$10.00/© 2002 IEEE
2 IEEEAC paper #260, Updated Sept 24, 2001

Abstract—In wireless sensor networks, where energy
efficiency is the key design challenge, the energy
consumption is typically dominated by the node’s
communication subsystem. It can only be reduced
significantly by transitioning the embedded radio to a sleep
state, at which point the node essentially retracts from the
network topology. Existing topology management schemes
have focused on cleverly selecting which nodes can turn off
their radio, without sacrificing the capacity of the network.
We propose a new technique, called Sparse Topology and
Energy Management (STEM), that dramatically improves
the network lifetime by exploiting the fact that most of the
time, the network is only sensing its environment waiting for
an event to happen. By alleviating the restriction of network
capacity preservation, we can trade off extensive energy
savings for an increased latency to set up a multi-hop path.
We will also show how STEM integrates efficiently with
existing topology management techniques.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. SPARSE TOPOLOGY MANAGEMENT
 3. THEORETICAL ANALYSIS
 4. PERFORMANCE EVALUATION
 5. COMBINING STEM AND GAF
 6. CONCLUSIONS
 7. ACKNOWLEDGEMENTS

 1. INTRODUCTION

Sensor Networks

Sensor nodes are autonomous devices equipped with heavily
integrated sensing, processing, and communication
capabilities [1][2]. When these nodes are networked
together in an ad-hoc fashion, they form a sensor network.
The nodes gather data via their sensors, process it locally or
coordinate amongst neighbors and forward the information
to the user or, in general, a data sink. Due to the node’s
limited transmission range, this forwarding mostly involves

using multi-hop paths through other nodes [3]. It is
important to point out that a node in the network has
essentially two different tasks: (1) sensing its environment
and processing the information, and (2) forwarding traffic as
an intermediate relay in the multi-hop path.

Such sensor networks find applicability in wildlife
observation, smart office buildings, and applications such as
battlefield or disaster area monitoring. They are also
considered to establish sensor grids on distant planetary
bodies, relaying information to the interplanetary Internet. In
addition, future large-scale networks of resource limited
satellites are likely to be governed by similar principles and
can benefit from the design methodologies developed for
sensor networks.

The major design challenge for this type of networks is to
increase their operational lifetime as much as possible,
despite the limited energy supply of each node [1][2][3].
Indeed, to provide unobtrusive operation, sensor nodes are
miniature devices and, as a result, operate on a tiny, non-
replaceable battery. Energy efficiency is therefore the
critical design constraint.

In terms of energy consumption, the wireless exchange of
data between nodes strongly dominates other node functions
such as sensing and processing [1][3][4]. Moreover, the
radio consumes almost as much energy in receive and idle
mode as it does in transmit mode [4]. Significant energy
savings are only obtainable by putting the node in sleep
mode, essentially disconnecting it from the network and
changing the topology. This has severe repercussions, as
sleeping nodes can no longer function as relays in multi-hop
paths.

Topology Management

The goal of topology management is to coordinate the sleep
transitions of all the nodes, while ensuring adequate network
connectivity, such that data can be forwarded efficiently to

145

goodelle
Text Box
Appendix H:

the data sink. Existing topology management schemes try to
do just that: they remove redundancy in the network
topology while trying to conserve the data communication
capacity [5][6]. Due to this restriction of sacrificing as little
of the forwarding capacity as possible, the gains of these
schemes are relatively modest, even for extremely dense
networks. The underlying reasoning is that they implicitly
assume the network has data to forward, which we refer to
as being in the ‘transfer state’.

However, most of the time, the sensor network is only
monitoring its environment, waiting for an event to happen.
For a large subset of sensor net applications, no data needs
to be forwarded to the data sink in this ‘monitoring state’.

Consider for example a sensor network that is designed to
detect brush fires. It has to remain operational for months or
years, while only sensing if a fire has started. Once a fire is
detected, this information should be forwarded to the user
quickly. Even when we want to track how the fire spreads, it
probably suffices for the network to remain up only for an
additional week or so. It is clear that although the transfer
state should be energy efficient, it is far more important for
the monitoring state to be ultra-low power, as the network
resides in this state most of the time. Similar observations
hold for applications such as surveillance of battlefields,
machine failures, room occupancy, or other reactive
scenarios, where the user needs to be informed once a
condition is satisfied.

Of course, different parts of the network could be in
monitoring or transfer state, so, strictly speaking, the ‘state’
is more a property of the locality of node, rather than the
entire network. We also note that the network probably
needs to transition to the transfer state periodically to
exchange network management and maintenance messages
[1].

Nevertheless, these sensor networks often spend the vast
majority of time in the monitoring state. It is therefore
critical to optimize the network’s energy efficiency in this
state as much as possible, beyond what is accomplished by
existing topology management techniques.

We acknowledge that sensor networks could also be
designed to periodically send updates to the data sink, or, in
general, reside in the monitoring state much less frequent. In
this case, the technique presented in this paper is expected to
be much less useful. Yet, we foresee that the majority of
sensor network applications and scenarios would have
significant periods without data forwarding activity, and as
such greatly benefit from the topology management
technique we will present here.

Our Contributions

We observe that in the monitoring state, which we expect to
be predominant, the requirement of capacity preservation is

no longer pertinent. Instead, nodes only need the ability to
wake up neighbors to perform coordinated sensing or set up
a path, with a reasonable latency. As such, the network
topology can be much sparser, and nodes spend more time
sleeping.

In principle, the communication capacity could be reduced
to virtually zero, by turning off the radios of all nodes (i.e.,
putting them in the sleep mode). Note that the sensors and
processor can be on at that time, since they are much less
power hungry than the communication subsystem. As soon
as events are detected, however, nodes need to be woken up
quickly to set up the multi-hop communication path to the
data sink. This requires nodes to communicate with each
other, but this is only possible if they have their radio turned
on. We obviously have two contradictory requirements here:
on the one hand, nodes should be in sleep mode as often as
possible when they are in the monitoring state, yet they
should receive requests of other nodes to return to the more
active transfer state.

In this paper, we propose a new topology management
scheme, called STEM (Sparse Topology and Energy
Management). It trades off energy consumption in the
monitoring state, versus latency of switching back to the
transfer state. The resulting energy savings have a significant
impact on the network lifetime, which is extended in
addition to and beyond existing approaches.

Prior Work

For sensor networks, two alternative routing approaches
have been considered: flat multi-hop and clustering.
Although STEM is applicable to both of them, we mainly
focus on flat multi-hop routing [3][7][8]. For clustered
approaches [9], which are possibly hierarchical, our scheme
can be used to reduce the energy of the cluster heads,
although the gains are expected to be less dramatic here.

Recently, topology management techniques, called SPAN
[5] and GAF [6], have been proposed for flat multi-hop
routing. They operate on the assumption that the network
capacity needs to be preserved. As a result, the energy
consumption is approximately the same whether the network
is in the transfer or monitoring state, as no distinction is
made between them. In contrast, STEM dramatically
improves the energy efficiency in the monitoring state, far
beyond what is achieved by SPAN and GAF alone, which
can still be used in the transfer state. We can thus claim that
STEM is in a way orthogonal to these existing techniques.

In SPAN [5], a limited set of nodes forms a multi-hop
forwarding backbone, which tries to preserve the original
capacity of the underlying ad-hoc network. Other nodes
transition to sleep states more frequently, as they no longer
carry the burden of forwarding data of other nodes. To
balance out energy consumption, the backbone functionality
is rotated between nodes, and as such there is a strong

146

interaction with the routing layer. Unlike SPAN, STEM
does not try to conserve capacity, resulting in greater energy
savings, and also does not impact routing.

Geographic Adaptive Fidelity (GAF) [6] exploits the fact
that nearby nodes can perfectly and transparently replace
each other in the routing topology. The sensor network is
subdivided into small grids, such that nodes in the same grid
are equivalent from a routing perspective. At each point in
time, only one node in each grid is active, while the others
are in the energy-saving sleep mode. Substantial energy
gains are, however, only achieved in very dense networks.
We will discuss this issue further on in this paper, when we
integrate STEM with GAF.

An approach that is closely related to STEM is the use of a
separate paging channel to wake up nodes that have turned
of their main radio [10]. However, the paging channel radio
cannot be put in the sleep mode for obvious reasons. This
approach thus critically assumes that the paging radio is
much lower power than the one used for regular data
communications. It is yet unclear if such radio can be
designed. STEM basically emulates the behavior of a paging
channel, by having a radio with a low duty cycle radio,
instead of a radio with low power consumption.

 2. SPARSE TOPOLOGY MANAGEMENT

Basic Concept

In the application scenarios we consider in this paper, the
sensor network is in the monitoring state the vast majority of
its lifetime. Ideally, we would like to only turn on the
sensors and some preprocessing circuitry. When a possible
event is detected, the main processor is woken up to analyze
the data in more detail. The radio, which is normally turned
off, is only woken up if the processor decides that the
information needs to be forwarded to the data sink.

Now, the problem is that the radio of the next hop in the
path to the data sink is still turned off, if it did not detect that

same event. As a solution, each node periodically turns on
its radio for a short time to listen if someone wants to
communicate with it. The node that wants to communicate,
the ‘initiator node’, sends out a beacon with the ID of the
node it is trying to wake up, called the ‘target node’. In fact,
this can be viewed as the initiator node attempting to
activate the link between itself and the target node. As soon
as the target node receives this beacon, it responds to the
initiator node and both keep their radio on at this point. If
the packet needs to be relayed further, the target node will
become the initiator node for the next hop and the process is
repeated.

Dual Frequency Setup

Once both nodes that make up a link have their radio on, the
link is active, and can be used for subsequent packets. In
order for actual data transmissions not to interfere with the
wakeup protocol, we propose to send them in different
frequency bands using a separate radio in each band. Sensor
nodes developed by Sensoria Corporation [11], for example,
are already equipped with a dual radio.

Figure 1 shows the proposed radio setup. The wakeup
messages, which were discussed in the subsection above, are
transmitted by the radio operating in frequency band f1. We
refer to these communications as occurring in the ‘wakeup
plane’. Once the initiator node has successfully notified the
target node, both nodes turn on their radio that operates in
frequency band f2. The actual data packets are transmitted in
this band, or what we call the ‘data plane’.

Figure 1 – Radio setup of a sensor node

Figure 2 – State transitions of STEM for a particular node

Wakeup plane: f1

Data plane: f2

t1 t2

t3

t4

t5

T TRx

Sleep

Rx
Tx Power

Power
Time

Time

f1

f2

Tx /Rx Tx /Rx

Sleep

147

STEM Operation

Figure 2 presents an example of typical radio mode
transitions for one particular node in the network. Some
representative power numbers for the different modes are
summarized in Table 1. These numbers correspond to a 2.4
Kbps low-power RFM radio using OOK modulation, with
an approximate transmit range of 20 meters [4].

Table 1. Radio power characterization

Radio mode Power consumption (mW)

Transmit (Tx) 14.88

Receive (Rx) 12.50

Idle 12.36

Sleep 0.016

At time t1, the node wants to wake up one of its neighbors
and thus becomes an initiator. It starts sending beacon
packets on frequency f1, until it receives a response from the
target node, which happens at time t2. At this moment, the
radio in frequency band f2 is turned on for regular data
transmissions. Note that at the same time, the radio in band
f1 still wakes up periodically from its sleep state to listen if
any nodes want to contact it. After the data transmissions
have ended (e.g. at the end of a predetermined stream of
packets, after a timeout, etc.), the node turns its radio in
band f2 off again. At time t4, it receives a beacon from
another initiator node while listing in the f1 band. The node
responds to the initiator and turns its radio on again in band
f2.

Figure 3 – Radio on-time in the wakeup plane

In order for the target node to receive at least one beacon, it
needs to turn on its radio for a sufficiently long time,
denoted as TRx. Figure 3 illustrates the worst-case situation
where the radio is turned on just too late to receive the first
beacon. In order to receive the second beacon, TRx should be
at least as long as twice the transmit time B1 of a beacon
packet, plus the inter-beacon spacing B2 that is required to
allow the target node to respond.

 3. THEORETICAL ANALYSIS

Setup Latency

Before simulating our protocol, we first develop a
theoretical model of the system performance. We define the
setup latency TS of a link as the interval from the time the
initiator starts sending out beacons, to the time the target
node has responded to the beacon. Typically the target and
originator node are not synchronized, which means that the
beacon sending process starts at a random point in the cycle
of the target node. As a result, the start of the first beacon is
distributed uniformly random in interval T. Figure 4 shows
the values of TS, normalized versus B1+2 = B1 + B2, for
different start times of the beacon sending process.

It is clear that TS only takes on integer multiples of B1+2, as
this is the time it takes to send a beacon and receive the
response to it. For the region that is labeled i in Figure 4, the
setup latency is equal to i·B1+2, since beacon i is the first one
to fall entirely within the interval of length TRx when the
target node’s radio is on. The probability of being in region
i is equal to the length of that region divided by T. As a
result, for T > TRx, the statistics of TS can be derived from
Figure 4 as:

 (1)

Figure 4 – Analysis of the setup latency

B1 B1 B2

Rx

min TRx

Sleep

Beacon
packets

T

BT
BTP Rx

S
1

21)(
−

== +

T

B
BkTP S

21
21)(+

+ =•=

T

BBTBKT
BKTP Rx

S
21121

21))1((++
+

++−•−=•+=

Kk ...2=

T - TRx

TRx

B1 B1 B1+2

1 4 5 3 2 6 7 =
+21B

TS

T

148

 (2)

Based on these equations, we calculate the average setup
latency

ST for a link. To simplify the expressions, we select

TRx equal to its minimum value (see Figure 3):
 (3)

In this case, (1)-(2) reduce to:

 (4)

 (5)

The average setup latency per hop can be derived from (4)
as being equal to (6), where δ is defined in (5).

 (6)

If T is an integer multiple of B1+2, this expression simplifies
to:

 (7)

Equations (6) and (7) are valid on condition that T > TRx. For
the special case when there is no sleep period, T = TRx and
the average setup delay is equal to:
 (8)

Energy Savings

The total energy consumed by a node during a time interval t
can be broken up into two components, one for each
frequency band.

 (9)

Equation (10) details the energy consumption in the wakeup
plane. The first term accounts for the listening cycle, where
Pnode is given by (11). In this equation P0

node is a
combination of idle and receive power. Since both are very
similar, see Table 1, we can approximate P0

node by Pidle. The
second term in (10) represents the energy consumption of
transmitting beacon and response packets (Psetup is thus a
combination of transmit, receive and idle power).

 (10)

 (11)

The energy consumption in the transfer plane is given by
(12). In this equation, tdata is the total time the radio is turned
on in the transfer plane for communicating data. As a result,
Pdata contains contributions of packet transmission, packet
reception and idle power.

 (12)

Without topology management, the total energy would be
equal to (13). Although Pdata also contains contributions of
Pidle, we have chosen to split up the energy consumption in
analogy with (12) for ease of comparison. The main
difference is that the radio is never in the energy-efficient
sleep state here.

 (13)

The gain in terms of energy obtained by using STEM is the
difference between (13) and (9):

 (14)

Since we consider scenarios where the node is in the
monitoring state most of the time, we can roughly disregard
tdata and tsetup. By ignoring the minute power of the sleep
state and substituting P0

node in (11) by Pidle, we approximate
(14) as:
 (15)

Furthermore, by also ignoring tdata in (13), we can
reasonably approximate the relative gain in terms of energy
as:

 (16)

From (6) and (16), we can derive the general relationship
between the setup latency and the relative energy gain for a
node. For the special case where T is an integer multiple of
B1+2, as in (7), this relationship is given by:

 (17)

Since the node has a finite battery capacity, these energy
savings directly correspond to the same relative increase in
the lifetime of a node, which ultimately results in a
prolonged lifetime of the sensor network.

T

T

E

E
E Rx

original
node

node
node −.=. 1

()212
1

+−•
−=.

BT

T
E

S

Rx
node

2
21++= BT

TS

 ++−
=

+

+

21

211

B

BBTT
K Rx

121 BBTRx += +

T

B
BkTP S

21
21)(+

+ =•= Kk ...1=

transferwakeupnode EEE +=

T

TPTTP
P RxnodeRxsleep

node

•+−•
=

0)(

setupsetupsetupnodewakeup tPttPE •+−•=)(

datadatadatasleeptransfer tPttPE •+−•=)(

datadatadataidle
original
node tPttPE •+−•=)(

node
original
nodenode EEE −=.

)1(
T

T
tPE Rx

idlenode −••.

T

BKT
BKTP S

21
21))1((+

+
•−=•+=

δ−=

=

++ 2121 B

T

B

T
K

)1(
22

2
2121 δδ −••

•
++= ++

T

BBT
TS

21+= BTS

datasleepidlenodesleepidle tPPtPPP •−−•−−= •)()(

setupnodesetup tPP •−− •)(

149

 4. PERFORMANCE EVALUATION

Simulation Setup

In this section, we verify our algorithm through simulations,
which were written on the Parsec platform, an event-driven
parallel simulation language [12]. We distribute N nodes
randomly over a square field of size L x L and each of them
has a transmission range R.

For a uniform network density, the probability Q(n) for a
node to have n neighbors in a network of N nodes is given
by the binomial distribution of (18), when edge effects are
ignored. In this equation, QR is the probability of a node
being in the transmission range of a particular node, given
by (19). We use the symbol Q in this paper for probabilities,
to avoid confusion with power (denoted by P).

 (18)

 (19)

For large values of N, tending to infinity, this binomial
distribution converges towards the Poisson distribution (20)
[13]. The network connectivity is thus only a function of the
average number of neighbors of a node, denoted by
parameter . .

 (20)

 (21)

Since the traffic communication patterns depend solely on
the network connectivity, we only have to consider . and
not N, R and L separately. We have verified this statement
through simulations, and therefore can characterize a
uniform network density by the single parameter . .

In our simulations, we have chosen R = 20 m, which
corresponds to the numbers in Table 1. The area of the
sensor network is such that for N = 100, we have . = 20.
Furthermore, our setup includes a CSMA-type MAC, similar
to the DCF of 802.11. Table 2 lists the other simulation
settings, where Lbeacon and Lresponse are the sizes (including
MAC and PHY header) of the beacon and the response
packets respectively.

Table 2. Simulation settings
R 20 m Rb 2.4 Kbps
L 79.27 m B1+2 150 ms

Lbeacon 144 bits TRx 225 ms
Lresponse 144 bits

The node closest to the top left corner detects an event and
sends 20 information packets of 1040 bits to the data sink
with an inter-packet spacing of 16 seconds. This process will
therefore take about t* = 320 seconds. The data sink is the
sensor node located closest to the bottom right corner of the
field. We have observed that the average path length is
between 6 and 7 hops. All reported results are averaged
over 100 simulation runs.

Simulation Results

Figure 5 shows the average setup latency per hop as a
function of the wakeup period T. The dashed curve with the
markers is obtained via simulations, while the top solid
curve corresponds to (6). There is a constant offset, which is
due to the fact that the transmission time of a beacon and
response packet is actually 120 ms, while the beacon period
B1+2 was chosen conservatively to be 150 ms. The actual
setup latency is thus comprised of a number of B1+2 periods,
plus the time to transmit a beacon and receive the response,
which is about 30 ms less than what is calculated
theoretically in (6). From Figure 5, we observe that if we
correct (6) by subtracting 30 ms, the correspondence to
simulations is indeed very close.

Figure 5 – Average setup latency

In Figure 6, the total energy is plotted versus the normalized
observation interval t/t*. As a basis for comparison, we
included the curve for a scheme without topology
management, which corresponds to (13). In this case, there
is only one radio, which can never be turned off. The other
dashed curves represent the performance for STEM with
different values of T. The theoretical results, plotted using
solid lines, are obtained by multiplying the curve without
topology management by (1-. E), see (16).

For all values of t, the same number of packets is sent,
meaning that the duration of the transfer state is kept
constant, and is approximately equal to t*. When t increases,

2
2

R
L

N π. •=

.. −•= e
n

nQ
n

!
)(

2

2

L

R
QR

π=

 −
•−•= −−

n

N
QQnQ nN

R
n
R

1
)1()(1

ST

T (s)

 (s)

Eq. (6) – 30 ms

Eq. (6)

150

the monitoring state becomes more predominant. As a result,
tdata and tsetup in (10), (12), (14) are negligible for large t,
such that the simulated values start approaching the
theoretical ones. We observe that STEM results in energy
savings when t > 2·t*, which means that the network should
reside in the monitoring state 50% or more of the time.

Figure 6 – Relative energy savings versus the total

observation interval t

Figure 7 explicitly shows the tradeoff between energy
savings and setup latency. The solid theoretical curves are
obtained from (16) and (6), with and without the correction
that was introduced in Figure 5. We have plotted the
simulated results for values of the different observation
period t.

Figure 7 – Simulated energy – setup latency tradeoff

For large t, the simulated performance converges to the
theoretical one. This corresponds to a regime where the

monitoring state heavily dominates the transfer state, which
is the focus of this work. We note, however, that STEM can
also be valuable if outside this regime (i.e., for smaller
values of t), although the gains are much less pronounced in
this case.

 5. COMBINING STEM AND GAF

As mentioned in the introduction, existing topology
management schemes, such as GAF and SPAN, coordinate
the radio sleep and wakeup cycles while ensuring adequate
communication capacity. STEM can be viewed as being
orthogonal to these schemes, and additional gain is achieved
by considering combinations STEM-GAF or STEM-SPAN.
In this work, we specifically focus on the interaction
between STEM and GAF.

GAF Behavior

In this subsection, we discuss plain GAF, i.e., without
STEM. The GAF algorithm is based on a division of the
sensor network in a number of virtual grids of size r by r,
see Figure 8. The value of r is chosen such that all nodes in
a grid are equivalent from a routing perspective [6]. This
means that any two nodes in adjacent grids should be able to
communicate with each other. By investigating the worst-
case node locations depicted in Figure 8, we can calculate
that r should satisfy (22) [6].

 (22)

Figure 8 – GAF grid structure

The average number of nodes in a grid, M, is given by (23).
By combining this with (22), we can see that M should
satisfy (24). The average number of nodes in a grid is thus
fairly low. Even if r satisfies (22) with equality, which we
assume to hold for the remainder of this paper, M is smaller
than 2 for densities of . = 31. To put this into perspective, .
= 31 corresponds to a topology where each node has 31
neighbors on average.

 (23)

 (24)

Since all nodes in a grid are equivalent from a routing
perspective, we can use this redundancy to increase the

r

r

2
2

r
L

N
M •=

π
.

5
=M

5

R
r =

t

E
(W)

E.

Rx

S

T

T

*t

t

Without STEM

T = 600 ms

T = 1200 ms

T = 3000 ms

Eq. (6)

Eq. (6) – 30 ms

t / t* = 2

t / t* = 102
t / t* = 103

t / t* = 101

151

network lifetime. GAF only keeps one node awake in each
grid, while the other nodes put their radio in the sleep mode.
To balance out the energy consumption, the burden of traffic
forwarding is rotated between nodes. For simplicity, we
ignore the unavoidable time overlap of this process
associated with handoff. If there are m nodes in a grid, the
node will (ideally) only turn its radio on 1/mth of the time
and therefore will last m times longer. However, equation
(24) shows that the redundancy is rather low on average,
even for fairly dense networks.

When distributing nodes over the sensor field, some grids
will not contain any nodes at all. We use . to denote the
fraction of used grids, i.e., which have at least one node. As
a result, the average number of nodes in the used grids is
equal to M’, given by:

 (25)

The average power consumption of a node using GAF,

GAF
nodeP , is equal to (26). In this equation, Pon is the power

consumption of a node if GAF would not be used. It thus
contains contributions of receive, idle and transmit mode, as
the node would never turn its radio off. With GAF, in each
grid only one node at a time has its radio turned on, so the
total power consumption of a grid, Pgrid, is virtually equal to
Pon (neglecting the sleep power of the nodes that have their
radio turned off). Since M’ nodes share the duties in a grid
equally, the power consumption of a node is 1/M’ that of the
grid, as in (26).

 (26)

The average relative gain in energy for a node is thus given
by:

 (27)

Alternatively, we see that the lifetime of each node in the
grid is increased with the same factor M’. As a result, the
average lifetime of a grid,

gridt , i.e., the time that at least one

node in the grid is still alive, is given by (28), where tnode is
the lifetime of a node without GAF. We can essentially view
a grid as being a ‘virtual node’, composed of M’ actual
nodes.

 (28)

Note that GAF

nodeP and
gridt , which are averages over all grids,

only depend on M’ and not on the exact distribution of
nodes in the used grids! Of course, the variance of both the
node power and the grid lifetime depends on the
distribution. If we would have full control over the network

deployment, we could make sure that every used grid has
exactly M’ nodes, which minimizes the power and lifetime
variance.

For the special case of a random node distribution, we now
calculate the statistics exactly. The probability Q(m) of
having a grid with m nodes is given by (29). The derivation
is analogous that the one leading to (20).

 (29)

In this case, the fraction . of used grids is equal to:

 (30)

The probability of having m nodes in a used grid is given by:

 (31)

We also know that the probability that power of a node is
equal to 1/mth of that in a grid, is the same as the probability
of a node being in a grid with m nodes:

 (32)

Alternatively, equation (33) gives the probability that the
lifetime of a grid is m times that of an individual node.

 (33)

We can verify from (32) and (33) that the average values of

GAF
nodeP and tgrid are indeed equal to (26) and (27) respectively.

Interaction of STEM and GAF

As mentioned before, GAF essentially places one virtual
node in each grid, and the physical nodes alternatively
perform the functionalities of that virtual node. From this
perspective, combining GAF with STEM is straightforward
by envisioning the virtual node as running STEM. In real
life, nodes alternate between sleep and active states, as
governed by GAF. The one active node in the grid, runs
STEM in the same way as described in section 2. The only
difference is that now the routing protocol needs to address
virtual nodes (or grids) instead of real nodes.

This insight allows us to directly modify the expressions of
section 3 to similar ones for the combination of STEM-
GAF. In particular, (16) becomes (34), where the statistics
of m are given by (32).

 (34)

M

P

M

P
P gridonGAF

node ∋
=

∋
=

Mtt nodegrid ∋•=

M
m

e
m

M
mQ −•=

!
)(

M

Mm

e

e

m

M

mQ

mQ
mmQ −

−

−
•=

=
==

1!)1(

)(
)1(

M
m

gridGAF
node e

m

M

M

mQm

m

P
PQ −

−

•
−

=•==
)!1(

)(
)(

1

MeQ −−=−= 1)0(1.

.
M

M =∋

M

Mm

nodegrid e

e

m

M
mmQmttQ −

−

−
•===•=
1!

)1()(

MtP

tPtP
E

on

GAF
nodeon

node ∋
−=

•
•−•=. 1

1

T

T

m
E Rx

node •−=. 1
1

152

When considering the average behavior over all grids, we
get:
 (35)

If T is an integer multiple of B1+2, we can combine (35) with
(7) to obtain the following tradeoff between energy savings
and setup latency:

 (36)

Figure 9 plots this tradeoff for different values of M’. As
argued before, these curves are independent of the exact
node distribution, but only depend on M’.

Figure 9 – Theoretical energy – setup delay tradeoff

The solid curves are based on (6) and (35). They therefore
represent the behavior as averaged over the different grids,
for any T > TRx. On these curves, the ‘+’ markers are points
obtained from (36), where T is an integer multiple of B1+2.

The circles mark the limiting case where the wakeup-plane
radio is always on (T = TRx). This case corresponds to a
traditional paging channel setup, where a separate paging
radio is used to wake up the main data radio [10]. Of course,
this only makes sense if the paging radio is substantially
more energy efficient than the main one. By looking at (27)
and (35), we notice that in this case the energy savings are
also the same as those of pure GAF, without STEM, which
corresponds to intuition. The circles can therefore be viewed
as the (energy) behavior of GAF as well, although, strictly
speaking, the setup latency does not have any true meaning
here.
By comparing (16) and (35), we note that the curve with M’
= 1 can also be viewed as representing the case of STEM
without GAF, where essentially no node redundancy is

exploited. So, besides the combination of STEM-GAF,
figure 9 also shows the behavior of GAF without STEM
(circles) and of STEM without GAF (curve with M’ = 1).

We notice that by allowing more setup latency, the energy
savings can be increased considerably beyond what is
achievable by GAF alone. For a uniform node deployment,
the values of M’ in Figure 9 translate to M and . as given by
(21), (23) and (25). Table 3 lists the values of these
parameters for the curves of Figure 9.

Table 3. Density mapping for
a uniform node distribution

M’ M .

1.0 0 0

1.5 0.87 13.7

2.0 1.59 25.0

2.5 2.22 35.0

3.0 2.82 44.3

Note that for moderate node densities (. < 25), the average
redundancy in a used grid is fairly low. As a result, GAF
alone only results in moderate energy saving, below 34%.
On the other hand, by incorporating STEM, we can achieve
savings of more than 93%! In other words, the energy is
reduced to 66% of the original value by GAF and to a mere
7% by also using STEM. The penalty is of course an
increased setup delay.

 6. CONCLUSIONS

In this paper, we have introduced STEM, a topology
management technique that trades off power savings versus
path setup latency in sensor networks. It emulates a paging
channel by having a separate radio operating at a lower duty
cycle. Upon receiving a wakeup message, it turns on the
primary radio, which takes care of the regular data
transmissions.

Our topology management is specifically geared towards
those scenarios where the network spends most of its time
waiting for events to happen, without forwarding traffic.
STEM leverages the fact that, while awaiting events, the
network capacity can be heavily reduced, resulting in energy
savings.

We have shown that STEM integrates directly with other
topology management schemes such as GAF, and results in
energy savings above and beyond these existing techniques.
Compared to a network without topology management, a
combination of GAF and STEM can reduce the energy
consumption to a mere 7%. Alternatively, this results in a
node lifetime increase of a factor 14! However, these

()212
1

1
+−•

•
∋

−=.
BT

T

M
E

S

Rx
node

Rx

S

T

T

E.

M’ = 3.0

M’ = 2.5

M’ = 2.0

M’ = 1.5

M’ = 1.0

T

T

M
E Rx

node •
∋

−=. 1
1

GAF alone

(STEM
alone)

153

benefits come at the cost of increased setup latency, which is
linearly proportional to the number of hops in the multi-hop
path. It will depend on the specific applications, how much
latency is allowed, and therefore how far the energy
consumption can be scaled down.

Analyzing the interaction of STEM and SPAN is a topic of
future research. Another issue worth investigating is how
power control strategies can be incorporated into topology
management.

 7. ACKNOWLEDGEMENTS

We would like to thank Sachin Adlakha for his useful
feedback, especially the theoretical analysis section.
This paper is based in part on research funded by the NSF
CAREER award and by the DARPA Power Aware
Computing and Communications (PAC/C) program through
AFRL contract # F30602-00-C-0154. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of the NSF, DARPA, Air Force Rome Laboratory
or the U.S. Government.

 REFERENCES

[1] K. Sohrabi, J. Gao, V. Ailawadhi, G. Pottie, “Protocols
for self-organization of a wireless sensor network,” IEEE
Personal Communications Magazine, Vol.7, No.5, pp. 16-
27, Oct. 2000.

[2] L. Clare, G. Pottie, J. Agre, “Self-organizing distributed
sensor networks,” SPIE - The International Society for
Optical Engineering, Orlando, FL, pp. 229-237, April 1999.

[3] D. Estrin, R. Govindan, “Next century challenges:
scalable coordination in sensor networks,” MobiCom 1999,
Seattle, WA, pp. 263-270, August 1999.

[4] A. Savvides, C.-C. Han, M. Srivastava, “Dynamic fine-
grained localization in ad-hoc networks of sensors,” MobiCom
2001, Rome, Italy, pp. 166 – 179, July 2001.

[5] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, “Span: an
energy-efficient coordination algorithm for topology maintenance
in ad hoc wireless networks,” MobiCom 2001, Rome, Italy, pp.
70-84, July 2001.

[6] Y. Xu, J. Heidemann, D. Estrin, “Geography-informed energy
conservation for ad hoc routing,” MobiCom 2001, Rome, Italy,
pp. 70-84, July 2001.

[7] J.-H. Chang, L. Tassiulas, “Energy conserving routing in
wireless ad-hoc networks,” INFOCOM 2000, Tel Aviv,
Israel, pp. 22-31,March 2000.

[8] J. Rabaey, J. Ammer, J.L. da Silva, D. Patel,
“PicoRadio: Ad-hoc wireless networking of ubiquitous low-
energy sensor/monitor nodes,” IEEE Computer Society
Workshop on VLSI 2000, Orlando, FL, pp. 9-12, April 2000.

[9] W. Rabiner Heinzelman, A. Chandrakasan, H.
Balakrishnan, “Energy-efficient communication protocol for
wireless microsensor networks,” HICSS 2000, Maui, HI,
Jan. 2000.

[10] S. Kumar, “DARPA sensor information technology
(SensIT),” http://www.darpa.mil/ito/research/sensit/.

[11] Sensoria Corporation, http://www.sensoria.com/.

[12] R. Bagrodia, R. Meyer, M. Takai, Y.A. Chan, X. Zeng,
J. Marting, H.Y. Song, “Parsec: a parallel simulation
environment for complex systems,” Computer, Vol.31,
No.10, pp. 77-85, October 1998.

[13] M. Yacoub, Foundations of Mobile Radio Engineering,
CRC Press, 1993.

Curt Schurgers received his MSEE
summa cum laude from the Katholieke
Universiteit Leuven (KUL), Belgium, in
1997. From 1997 to 1999, he worked at
IMEC (Interuniversity Micro Electronics
Center, Leuven, Belgium) on memory
optimization techniques for turbo codes.
Currently, he is pursuing his Ph.D. degree UCLA, focusing
on energy efficient communication and networking systems.
Curt Schurgers has received the F.W.O., the B.A.E.F. and
the UCLA fellowships in 1997, 1999 and 2000 respectively.

Vlasios Tsiatsis has received his BS degree
from the Technical University of Crete,
Chania, Greece in 1998, and his M.S.
degree in EE from the University of
California, Los Angeles (UCLA), in 2001.
He is currently pursuing his Ph.D. degree
at UCLA, researching low power protocol architectures. In
1998 and 2000, he was honored with the UCLA fellowship.

Mani Srivastava is an Associate Professor
of Electrical Engineering at UCLA. He
received his B.Tech. in EE from IIT Kanpur
in India and M.S. and Ph.D. from Berkeley.
From 1992 through 1996 he was a Member
of Technical Staff at Bell Laboratories in
Networked Computing Research. His
current research interests are in mobile and wireless
networked computing systems, low power systems, and
sensor networks. He received the NSF CAREER award in
1997, and the President of India Gold Medal in 1985.

154

���������� 	
��� �
����� �� ��

��
������
�����
����� �
���� 	���

��� 	����
�� ������� ���	�
� ����� ������� ���������

	����� ��
����� ��! "��� 	�#����#�� ���	�
� ����

��������$%� ��
�
�� �
��� �
������
�
��
&&���
��� �� ������ �� ����
#��� �����&����� �
���� ��&
���
' ��
!��
 ��

�
��

����������� �����&�������� � ��!
 �����! ��� �&& ��� �!�� ���� �& ��
 ���
�
(�
�� ��
� �� ��� �� ���������
 �� !��� &���!���')

�����
 � �
� �
����*�
� ����
! 	���
 �������� ��! ��
�� "����
�
�� +	��",� �����
&&���
���� ���
� �� ��!
� &�� � !

�

��

� ����
 ������� ��
 �

! &� �� ���� �������
 �!��' ��
 !
����
 ��� ��!
 ��

�
��
&&���
��� �& ���� ��

� ����
 &� ��
 ���
���

��������
! ���� ������ �� ��
 ��!
' %� �!!������ �
 ���
���
 	��" ���� �������
� ���� ���� �
#
��

(�
�� �
���� !
�����')

���� ���� �� ����! ���
�� ���
�

����� ��
�
�� ��#���� �& �#
 ��� �!
� �& �������!
 �����
! �� �
��� �
����� �������

�������� �����
�
��' -���
��
� ��
 �
���� !
����
 �� �&&

! &��� &�
(������� ��
(�������� ��

�
������
����!
����� !
���� ����

�� �
�
����� ��
 ��������
 ����
�
 �
������ �& �� �������'

�	
�� ����$	
��� �
������
�
��
&&���
���� ���
��� ��������'

�

� ����������

�������� ��	�
� 	��
��� ��� ���
	
�
�� �� �
�
	��
��� �����	�� �
� �
	��
��	� ������ ���� ��

����������� ���������	��� �������	� ���������
	� �	������
�������
	� �	� �������
��������
	� ��
	� ��	�
����� � !�
�"!� �#!$ ��	�
� 	��
��� ��� ���� ��
� � ����� 	�����
�
��	� �������� ������ ��	�
� 	
���� ���� �
	���	 �	��������
��	�
��� ��
����
��� �	� ����
�$ %�� 	
��� ������ ����
��
��	�
� �����	��� ��
���� ����� �

���	��� ��
	� ����

����� �	� �
���� ��� ��
������ �	�
�����
	 �
 � ���� ��	�$
%��� �
�����	� ���������
����� ��������� ���
���� 	
���
���	� � ������
� ���� �#!� �&!$ %�� ������� �����	 ������	��
�	 ��	�
� 	��
��� �� �	���� �������	�� �� ��� �	��������
	
��� ����
	�� � ����� ������� �� � �
�� �
����$ %

������� ���������
�� 	��
�� ��������� �	���� �������	�� ��
������ � ��
���� ���� 	���� �
 �� �������
	 ��� �����
� ���
�	���� 	��
��$ '	�
� ��� ��� ������� �� ���
���	�(���
	
�
	��
�� �
���	�����
	� �� ��� ����
 �� ��� ���	 �	����
�
	����� �	 � ��	�
� 	
�� � !� �#!� �)!$ %��
	�� �� �

������ ���� �	���� �� �
 �
�������� ���	 ��� ����

�� �)!$
*
����� ������� ��	��	� ����� �	���
	��	�� 	
��� ���

�
�� ��� �� �
� 	��
�� 	����� �
 �
���� ��� ���� �
 ���
���� ��	�$ %
�
�
�� ��	�����	� ������� �

���	���
���� 	
��� ���	 ����� ����

�� �	� ��	 ���� ���� ���
������� �
�����	� �����	� ���������
�� ���� ��	���(�	�
��� 	��
�� �	���� �
	������
	$

+
	������ �
� �,������ � ��	�
� 	��
�� ���� �� �����	��
�
 ������ ����� �����$ �� ��� �
 �����	
������
	�� �
� �
	���

� ����� ����
	�� ��	��	� �� � ���� ��� �������$ '	�� � ����
�� ��������� ���� �	�
�����
	 ��
��� �� �
������ �
 ���

���� �������$ ���	 ��	 � �	� �
 ����� �
 ��� ����
�������� �� ��
����� �������� �
� ��� 	��
�� �
 �����	 ��

	�� �
� �	 ������
	�� ���
� �
$ �������
��������
	� �
��
�
� ���������
	� ���� �� ���������	��
� ������������� �����	�
��������� �

�
�����	���
�
���� �������� ���	���
�� ����
��� ���� 	���� �
 �� �	�
����
	�� � �
	����
	 �� ���������$
%�� ��-
����
� ��� ����� ��� 	��
�� ��
	�� ��	��	� ���
�	���
	��	�� ���� � ����� �
 �� ��� 	��
�� ���	� �	 ���
���������� ��	�
$ '	�� �	 ���	� �����	�� ���� 	���� �
 ��
�
������ �
 ��� ���� ��	� �	� ��� 	��
�� ���	����
	� �

��� �
�� ������ ��	���
� ��	�
$

�� ��
�
�� � 	� �
�
�
�� ��	�����	� ������� ������
���� �����	
 ������� ��� ��
�� ����
�
���$ ��
������� ��� �	���� �
	������
	 �	 ��� �
	��
��	� �����
�
 � ���� ��	���� ���� �	����	� ���������
�� ����	�� �
�
���	����
	�	� �
 ��� ���	���� �����$ �	 ����� �%�. ���
� �� �

�������	��� �����
	� �����	 �
	�����	� /�	����0 �
� ���
����
/����	��0$ �� ���
 �
���	� �� ��� ����	����� ���� ��������
�	������� 	��
�� ��	���� �

����	 �	���� ����	��$ �	
����	���
�� ������ ����
����� ��� �����	��� ���� ���,�������
�	 �����	� ����	��� ��	����� �	� �	���� ������ ����
����$

1�������
��� � ������ ��� ������������ �
��� ����
�
���	� ����� �����
���$ 1
� �,������ �
� � �������� �������
	��
�� �������� �	� ���������� 	
��������
	 ����	��� � ��	
��������� ��� 	��
�� ��	���� ���� �� ��������$ ���	 �%�.
�� ��		�	� �	 ��� 	��
��� ���� ��	���� ��� ������ ���� �
��
��� ����	�� �	� ��� 	��
�� �������� ��� �� �������$ %���
�
��� �� ������
�� � �

� �
� ��� 	��
�� �����	�� �
 ��

��
���
������ ��������� �����	�� ����	 ��� ����
���	�
���������	��$ 2� �����	 ����� �� ���
� ��� �������
	
� ���
�������
������	� �
�	� �	 ��� ����	��3��	����3��������
�����	 �����$

� ������ ����

1
� �
���	� �	 ��	�
� 	��
���� �
 �����	����� ����
�����
���� ���	 �
	�������4 ���� ������
� �	� ��������	�$

%��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887 3

� �
 	����� 	�
 ��� �
 �
�����
� 	�� ���
��
� ����
�� �	� �������
��
�����	� �����

���� �
�	���
��� ���
����� �� !	������	 	� ���
"��
�
�� #$%&'#(���) *+� �!�"%�� �
��)� ��� "��
�
�� !" ,--,#)
�%�	��. /������ ���	����� �	��	�� ���01

)���)
��)

2	�������� �
�
�
� 3 2	�) '--'4 �
 ��
� &5 2	� '--'4 	��
��
� &5 2	�
'--')
6�� ������	���� �� ���	����� �
������ �� ��� 	�����
� ��
	�
 �
��
%�	�� ��.
���1������
�)���� 	�� �
�
�
��
 *���!� ��� ����
� 3%-5'--')

39:;�<7::=87=>3<'88 � 7887 %���155

goodelle
Oval

goodelle
Text Box
Appendix I:

goodelle
Oval

2���
��� �%�. �� ���������� �
 �
��
� ����� � ���	��
�
���
	 ���� ������
� �
���	� �#!� �5!� �6!$ 1
� ���������
����
����� �&!� ���� ��� �
������ �������������
�� ������
��	 �� ���� �
 ������ ��� �	����
� ��� ������� �����$
����	���� �
�
�
�� ��	�����	� ����	������ ������ �728
�9! �	� :21 �;!� ���� ���	 ��
�
��� �
� ���� ������
�
�
���	�$ %��� ����� 	��
�� ��	���� �
� �	���� ����	��
���� ��������	� ��� ���� �
�����	� ��������
� ���
	��
��$ *
����� ��� ����	��
� ������� �	 ��� �
	��
��	�
����� �� 	
� �,��
���� �� ���$ <� �	�������	� ����� �������
�	�
 �%�.� �� � �������� �	 �����
	 ;� � ��	 �
���	�
����� ��	����� ��� ��
��
� �%�. �
 ������� �
��
�	���
�	���� ����	��$

�%�. �� ����	������ � ����	���� �
 ������� ���	����
	 �

��� ���	���� ������ ���� ����	� ��� �
	��
��	� ����� ��
�	���� �������	� �� �
������$ '���� ����
�� ���� ��
�
��� �

�
 ���� ��� �� ���	� � �������� ����	� ���		�� � =!$ %���
����
��� ���������� ������� ���� ��� �����	 �
��
� ����
����	� ����
 �� ����� �
 �
��$ *
����� ��� �������	�� �	
��� ���	������
	 ��	�� �����	 ��� ���� �	� ����� ����

�����	�� � ��-
� ����������$ �%�.
����� �	 �����	����� ��
�����	� �	���� �
� ����	��$ 1�������
��� �� ���� � �
3
�
�� ����
 �� ���������� ��� �	���� ����	�� ��� �������
����
��� �� ���	� �� �	 � �
 ���� ������ �� �%�. �
��$
%��
�� �	 �)! ��������� �	 ���
����� ���� ���
 ���� � �

���� ����� ����
$ %��� ���
����� �� �����	�� �
� � �������	�
�
��� 	������ �
 ����
��� ��� 	��
�� �
�
�
�� �
�� ����
����� ��� ����
���	�$ �� �� ���� ���������� ���	 �%�. �	��
������
���
��� ������ �	 ���� ������ ����	���� �

���	����
	 �
 ��� ���	���� �����$ %�� ���� ���	�����
� ����
�����	� ��� ����
 �� ���
 ������� �	 ��� .����� 2�����
+
	��
� /.2+0 ��
�
�
� �����	��� �	 � ;!� ������ �3.2+$
*
����� ���		�� ������ �	� 	
�� ����� ��� �	��������
�
������$ �	 ��� �
	��
��	� ������ ���� ����� �� 	
 ���� �

�
����� �%�. �� ������
�� �
�� �	���� �������	� ���	
�3.2+ ���� ������	� ������ ���	����
	�	� �
 ��� ���	����
�����$ �	 ���� ���	���� ������
�� ����
��� ���
� �
� �	�
.2+ ��
�
�
�� �	�����	� �3.2+$

� ������ ������� ��� ������ ����� ��

�!� "��#� �$	��%�

�	 ��� �
	��
��	� ������ ���� ����� �� 	
 ������� �
 �
�����

	�� ��� 	
��>� ��	�
�� �	� �
�� �����
�����	� ���������
���
	$ 1
� ����������� � ����� �
 ���� ����� �� ��� 	
��
���	� ������
� �	 ��� ����� �����$ ���	 � �
������ ���	� ��
��������� ��� ���	 ��
����
� �� ����	�� �
 �	���(� ���
���� �	 �
�� ������$ %�� ����
 ��
	�� ���	��
	 �� ���
��
����
� ������� ���� ��� �	�
�����
	 	���� �
 �� �
���3
	������ �

���� 	
���$ %�� ����
	 �
� ���� ��	 �� �	���3
��

� ��
� ��� ����
 �
�� �
�� 	������ �	 %���� $

%���� ��� �
� ��� %� === ����
 ��
� �1 .
	
������� � 9!�
���� ��� ���	���� ��	�� �� ��� �
 ����
,������� "= ������
�)!$ %��� �
3�
�� ����
 ��� � ���� ����
� "$) ?��� �	�
���� '	3'�� ?���	� /''? � 6!0 �
������
	$ 2� ��	 ��

������� ��
� ���� ������ ��� ����
 �
	����� �
	���������
�
�� �,���� ��	 �
�������� ���	��
��$

%
 �
���� �������� 	
���
	 ��� ������
� ���� 	��� �

�� ����	���
�� ��������	���� ���	����
	 ��
� ��� �
	��
�3
�	� �
 ��� ���	���� �����$ %�� ��
���� �� ���� ����� 	
���
���� 	
 ��
� �	
�	� ��	 �
 ���	����
	 �� ���� ��� 	
�
������ ���� ���� ���	�$ %���� ��� ������� � ��� �����
��� �� ��� �
��
�	�4 1
� �	���� ����
	�� ��� 	
��� ��
���
���	
�� ����� ����
 ��	 �	 ��� �
	��
��	� ������ ��� �����
	��� �
 �� �
�� �
���
 �� ���� ��
��� ���	 �� ����
	$ 2� �
�
����
	� ���� 	
�� ����
������� ���	�
	 ��� ����
 �
� �
��
�� ���� �
 �����	 �� �
��
	� �	�� �
 �
���	����� ���
��$ �	 ��� �
	��
��	� ������ �	�����
� �
������ ���	� �������
� 	
�� �
�� �	�
 ���� �
3�
�� �����	 �
��� �� ��
	 �	
1��$ $ %�� ����
�
� ��� �����	3����� ����� �� ��	
��� �� �$
%�� 	
�� ���� �	�� �
 �
���	������ ��� �����	��� ���
� �
���
��� 	
�� �� �� ����	� �
 ��� ��� ������ ��� �	��
� ���
$ ��
��� ������ ��� 	�����
� ����� �
��� �	 �����
	 #$#$ 2� �

	 ��
��� ������ 	
��� ���� �� �	 ��� �
3�
�� �����	 �
��
�
1��$ � ����� ��� �
��� ��� ��	� �����	 ��� �
 	
��� ��
���������$ �� ��� ������ 	���� �
 �� ������� �������� ���
������ 	
�� ��� ���
�� �	 �	�����
� �
� ��� 	�,� �
� �	� ���
��
���� �� ��������$

'	�� ��� ��	� �����	 	
��� �� ���������� ���� ��
���	������� ���	� � .2+ ��
�
�
�$ %��� .2+ ��
�
�
� ��

	�� ���� �	 ��� ���	���� ����� �� ���	 ��� �
�� �������	�
	�

��� �
	���� � �
� �
�� �	���� ���	
�� �
3�
��
�����	 �
��$ %�� ����
	 �� ���� .2+ ��
�
�
�� ��� �����	��
�

���	�(� ������ �
 ��� ������ ������� �	 ������
	 �

�
	�����	� 	
���$ '�� �������� �� ���� �
 ���
���� ���
���	���� �	� ����� ��	���
	�������4 �	 ��� �
	��
��	� ������
� �
	���� �� ������ �	���� �� �
������ �	�
	�� �	 ���
���	���� ����� �� ��� .2+ ��
�
�
� �������$

�!� �&���	��#'� ���(%�

����
�� ������� ��
�
�
� ��
����
	�� 	
��� ��� 	
� ��	3
���
	�(�� �	�� ������
��� �
 	
� �	
 ��� �����
� ����

����>� �����3����� ������ �	 ��� �����	 �
��$ %
 ��
��
�����	� ��� ��
�� ���� ��� ������ 	
�� ��� ��� ����

	� ���
�	�����
� ��� �
 �
�� �
	��	�
����$ 2� ��� ���� �������� ���
�	�
�������� ��� ��� ����� ������� �� ��� ���� ��
�� ���� �
����� �
� ��� ������ �
 ���� ��� �
��$ *
����� ����
���������� �
���	� ������ ��
������ �� ��
	 �	 1��$ "$ 2

7 %��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887

�/0�� 3
.�!�� 1��
 ������
�������

-��' 3' �������
 ����
� ��!
'

-��' 7' %��
&

��
 ����
� �& ���
���#
 ���
��'

156

goodelle
Oval

������� ���� ���	������
	 �� �
�	�
	 �����	 	
��� 2 �	�
<$ ���	 	
�� + �	�� �
 ��� �� @� ��� ���������� �
���
��� �
����� ��� ���
	�
�	� ���� ���	������
	� ����	������
����	� �� � -����� �
 <$ @������ �
������ ���
���� ����
	
��
� ��� .2+� ��� ���� �
���	�����
	 �����	 2 �	� <
������� ��
� �,��� ������$ 2� � ��� ���������� �	 �����
)�
�
�� �	���� ��	 �� ����� �� � ���
 �
�� ���� �
 ��� �� �
��	� �����	 �
 	
���$ %�����
��� � ����� ������ ����
����� ��
������ �
 �� ���������� �
	�� ��� ��� ������ ��
	��
���� �� ��� �����
� � �
���	�����
	 ��
��$ *
����� �� ��
��������� �	��������� �� ���� �����
��� ���
 ����� �������
�
	� ��������
	�
�
	�
�	� ���	������
	�$

��	�� ���� ���������� 	����� �� 	����� �
 ����� ���
����� ����	��� ��� �
����
	 �� �
 �
�������� �������� ����
���	���� ��
� �����$ 2 	������ ��
��� �� �
 ��� �
 ����
�

������	� �	 �������� ������	�� ��	��$ 2� ��
	 �	 1��$ #�
��� ����
 �	 ��	� �� ��
	�� ���	��
	 �	 ��� ���	���� ������
�	� ��� ����� ��	� �� ��	 �� ����� �� � �������� ����	�
���		��$ A	���� � =!� � ��� 	
� ������� �� ��� ������������

� �	 ����� �
 �
�� ����
 �
� ���� ����	� ���		��$ �	������
� ��	 ��� ��� �
�� �������	� ����
 ��������� �	� �������
������ ��� �	���� �
	������
	 �� �����	� �� �	
�� �
3
�
�� �����	 �
��$ %��� ���
� �� �
 ����� �	���� ����	��
������ ����	��� ���
	� ��� ������������
� ��� ����
 ��
	�� ��
� ��� ������ �����
	$

�	 ���	������ � �
��� ���
	� ����
 �	� ��� �� �����
�����	 ������	����$ *
����� �� � ������ 	
�� �� �������
���	������	� ���� �	� ���
 ��� �
 ��� �� �	
���� 	
��� ��
��� �
 �	������� ��� ���� ���	������
	
� �
���
	� ���
�����$ <
�� ��� �	��������� �	�� ������
��� � ��

�� �

��� �
 ����
�$ %�� ��	����
� ����	� ��� 	
�� �
��
�,��	���� �� ��	����� �� ��� ����
 ��������� ���
�	�� �
� ����
���	 9 �����	�
� ��� �
��
� � ��	�
� 	
�� /�$�$� �	 �,���
%� === � 9! ����

	 ��� .�+2 �
��� � 5!0$

2	 �����	����� �� �
 �������� ���� ���	������
	� ��
�
����� �� �
 �����	 ���� �
 �������� ���� ��
��� �� ��
	 �	
1��$)$ �	 ���� ����� ��� �	�����
�
	�� ��	�� ��� �
�� �	 ��� ��
�
�
 ���� ��� ������ �� �����	�	�$ A	�
���	������ ����
���
	
�������� ���� ��	���
	�(���
	 �� ��� 	
��� ���� �
 �����	
��	���
	�(�� �� ��� ������ ���� ���	�� ��
�� �
	���������

�������$ %�� �
	��
��	� �����
��� ���� �� ���� �
��
�	���� ��	��� ���	 �	 ��� �
 ����

���
	
� 1��$ #$ 2� �
��� �,����	 �	 �����
	 ;� ��� ���� �	���� ����	�� �� �	 ���
�����
� 1��$ # �
��� �� �������� �� ����
��	� �
�� 	
����
��� ��� �
��� 	��
�� ����
���	� �
��
��� �,���� ����
�
���	� �������� �
�� �,��	���� 	
���$ �� ������
��
�� �
�
��� �
����
	 ��� �
 ����
�$ ��	�
� 	
��� �����
��� ��
��	�
��� +
��
����
	 � !� �
� �,������ ��� �������
�������� ��� � ���� ����
$

�!� �%����#$	 $) �� *" �	
 �� *

%
 �
�� ��� ������ 	
��� ��� �	�����
� ��	�� � ������
�

����
	 ������� �	 ��	� ��$ ���� ����
	 �
	���	� ���

.2+ �������
� �
�� ��� ������ �	� �	�����
� 	
��$ 2�

�

	 �� ��� ������ �������� � ����
	� �� ���	�
	 ��� ����

����
 �	 ��	� �� �	� ���
 ��	�� ���� �	 ���	
������	�

�	 ��	� ��$ %��� ��� ��� �	�����
� �	
� ��	 �� ��	

��
� �
���	�� �������	� �	 � �������
	 �	 ����� ����	��� ��

� ��� ������ �	 �����
)$ %�� ��	���
� ��� �	�������
	

�	������ �� �� ���� ���� ����� �� ��������	� ���� �
 ��	� ���

����
	 �	� ������� ��� ���	
������	�$ %�� ���� ����	�

���� ��� ����
 �� ���	��
	 �	 ��� �����	 �
�� ��

��	
��� �� ��� /��� 1��$ 0$ �	
���� �
 �����	��� ���� ���

������ 	
�� �������� �� �����
	� ����
	� ��� 	���� �
 ��

�� ����� �� �
	� �� ��� ���	���� ����
� � ����
	 ���� ���

�	�������
	 �	������ ��$
�� �� ����� �
������ ���� �
�����
	� �����	 ����
	�
����$

%
 ��	��� ���� ������ � 	
�� ���
 ���	�
	 ��� ���� ����
 �� ��

����� � �
�����
	 ����	� ��� �����	 �	������ ���$ 2 �
�����
	

��	 �� �������� �� �
	��
��	� ��� ���� /�������� ���	��

����	��� �	�����
�0
� ��� ����
$ �	 ���� ����� ��� 	
�� �
��

	
� ��	� ���� �	 ���	
������	� �� ��
��� ������ �
�����

��� ����
�
���� 	
��� ���� ��� ���
 ����	�� ���� ��$

2���� ���	������	� ��� ����
	 ������ �
� � ��������	� ��
�	�

� ���� /����
,������� ����� �
 �B � ������ ��� �,���

�,������
	 �	 �����
)0� ��� �	�����
� 	
�� ��	 �� ���� ����

��� ������ 	
�� ��� ���	��
	 ��� ���� ����
 �	 ��	� ��$

�	����� �� ��� ������ 	
�� ��� ������ �����	��
	��� �� ���

�������� ��� ����
	 �
�������
� ���	 � �
������ ������ �	�

���	��
	 ��� ���� ����
 �	 ������ ����$ �� �� �
������ ����

	
��� ���� ��� 	
� ��� �	��	��� ������ 	
�� ������� �

��� �� ��� �
 ����
	 �
�����
	�$ �� ���� �
 	
� ������� �	�

������� �	 ��	� �� ����� �
�� ����� ���� ����
�� �	� �����	

�
 ��� �
	��
��	� �����$ ���	�������
	�� ��� ������� ������

	
��� ���� ����� ���� ����

	 �
� ��� ������
	
� ��� ����

���	����$ %�� ������� .2+ ����� ��	���� �
�����
	�
	 ���

���� ���	�$
2� �	 �����	����� �
 ��� ����
	3����� ����
��� ��3

������� ��
��� ��� �	�����
� 	
�� �
��� ������ ��	� �

����� �
	�$ �	 ���� ����� 	
��� ��� �� ��	 ���� ������

��� �����	��
� ���	�� �	���� �	 ����� �����	 �	������$ %��� ��

�,����� ��� ���� �������
	 �� ��	 ����
	� �
�����$

*
����� ��� ��� �
	�3����� ����
���� � ������ 	
��

	���� ��	�� ���� �	 ���	
������	�$ 2� ���
��� ���

�	�����
� ��� �
 ��	� ��� �
	� �
� � ��������	��� �
	� ����

���� ���� ��� ������ ������ ��� �
��	
	��$ 8
�� ���� ���

	
��� �	 ��� 	�����
��

�
� ��� �	�����
� ����� ��� ��

�	 ���� ����$ �	 ���� ������ � �	���(� �
�� ��� ����
	3�����

�	� ��� �
	�3����� ������$ �� ����� �
 ���� �� ������

/����
	0 �	� ������ /�
	�0� ������������$

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� :

-��' :' 	
����
 !��� ��! ���
�� ����� ��� �!���'

-��' B' 	
����
 !��� ��! ���
�� �� ���
'

157

goodelle
Oval

+ ,�������� �������� �- ��

+!� ���(% ����	�.

<��
�� ��������	�
�� ��
�
�
�� � ����� �����
� � ���
��3
����� �
���
� ��� ������ ����
���	��$ �� ����	� ��� �
���
�	�
��� �� �� 	 ���� �� ��� �	������ ��
� ��� ���� ��� �	�����
�
������ �
	�����	� ��� ������ �
 ��� ���� �
�� 	
��� ����
���	��
	 ����� ���� ����
$

�	 �%�.3<� ��� ������� ����� ����	�� �� ����
,�������
����	 �� / 0 �
� ��� ���� ���� ����� �� 	
 ����
	 �
�����
	$
�	 ���� ������
	� �� �	� �� ��� ��� ���	���� ������
	
� ���
����
	 �	� ���	
������	� ������� ������������$ %

�
	����� ��� ��

� ���� ������ � ���� �
��� ���
��������
	
� / 0 �
 2���	��, 2$

��� � � � ��

�
� � � �� ��� � ���� ���

�	 2���	��, 2� � ���
 ��
 ���� ��� ����� ����	�� �	
����
� � ����
	 �
�����
	 �� ����	 �� /"0$ %��� �,������
	� ��
��� ���� ����� ��������� ��� ��,���� ���� ����	� ����
��� �	�����
� 	���� �
 ��	� ����
	� �	� ��� �	 ����	��� ���

���3���� ����	��
� �%�.3<$

�� � � � �� � � � �� ��� � ���� ���
%�� ����� ����	��
� ��� �
	�3����� �����	�� �%�.3%� ��

�
	���	� �	� ����	 �� /#0� �� � ������ �	 2���	��, 2$ �	
���� ������
	� �� �� ��� ���� �	������
��� ���� ���		��
��	��	� 	���� �
 �� ����
���� �
 ������� � ���������
�� �

����� ����� ��
��������$

�� � � � ��� � � � ��� ���
+!� �	��/. ��'#	/�

1
� ������� ��
��3��	�� ����
� ���� �	 ��	�
� 	��
���� ���
���	����� �������� �	� ���� �
�� ��� ���
�� ���	����� /���
���
 %���� 0$ 1
� ��� ���� ����
� � ����
,����� ���
� ����
�� -���
	� �����4 	�$ 1
� ��� ����� ����
� ���� �� 	
�
	����������
� ��� ���� ���� �� ��� ���� ����
� ���� ����� ��
	�$ �	
�� �	������� 	� �	� 	� ��� ��
��	 ����� �
 ��� ����
�
��$ %�� ����� �
�� �
� ��� ���� �	� ����� ����
 ���
��	
��� �� 	
����� �	� 	
������ ������������$ %
 ��������
��
��������	� �,������
	�� � ����	� �
 	� ����������4

� � 	�

	�
� ���

� � 	
����� � 	
�����

	�
� ���

7�������� � �������	�� ��� �������� �
��
� ��� ���� �	�
����� ����
$ �� ���� �	��
����� ��������� � �
� ����3
������� ����
	�� ��� �� ���
 �
�����
	�� �
 ��� �
�� �
�	�

	 ��� �
�� ����	��� �� � ��� �,����	 �	 �����
	 ;$#$

2���� ���	� ����	�� ���	� �%�.� � 	
�� ���	�
	 ���
���� ����
 �	 ��	� ��$ ���	 ��� ���� �
���	�����
	 �����
��
���� ��� 	
�� �����	� �
 ��� �
3�
�� ����� �����$ %��
������� ���� ��� ����
 ��
	 ����	�
	� ���� ����
�
���	�����
	 ����� �� ��	
��� �� ����
�$ �� ��� .2+
��
�
�
� �� ���� ���� ��� 	
�� ���	�
�� ��� ����
 �
� �
��
����� ���� ����� ���� �� 	
� �	������ �	 ����
�$ ����
�
���	�����
	 ����� ��������
	� ���	����
	 ��
� ���
�
	��
��	� �
 ��� ���	���� �����$ %�� 	�����
� ����

���	����
	� ��� ���
	� �� ������ ��� ����� ������	��� �� $
%�� ������
	
� ���� ��� ���� ����
 �� ���	��
	 �� ���� ����	
�� �� ����	�� �� /;0$ %��� ���
 �
�����
	�� �
 ��� ��������
���
���	��
� ��� ���	���� �����$ %�� �	�����
� ��� ����
�����
� ��� ����� ����
 �� ������ �$

� � �� � ����
�� ���

� � �

���
� ���

�� �������� ��� �	���� ����	��
� ��		�	� �%�.
�������� �
 ��� �������
	 ���� ����� �� 	
 ����� ����

�	� ��� ���� ����
 �� 	���� ���	��
��$ %�� �������� �	����
�
� �
�� �%�.3< �	� �%�.3% �� ����
,������� ����	 ��
/60$ �	 ���� ������
	� �� �� ��� ������� 	�����
� ����� ���
���
	� ��� 	
�� ���� �� � ��	� �� ��� �	�����
�
��
��������	���� ��� ����� ������	��$ %�� ��������
	
� ����
�,������
	 �� �	������ �	 2���	��, <$

�

�	

� �

�
� �� �� � �� � �� �� �
�

2���
��� /60 �� ����� �
� �
�� �����
	�� � �� ������ �
 ��
������ �	 �%�.3% ���	 �%�.3< ��	�� �
�� 	
��� ���
����	�� ��	 ���� ��� 	
� ��� �	��	��� ������$ �	 �	�
����� ��� ����� �
 ����� ��� ��������� �
��	�	�$ %�� �	����
����	�� ��� ������ ��	 � �	�������� �� �,��	��	� ���
����
� �$ %��� ������� �	 ������ ����� ����	����� �� ��	 ��
���	 ��
� / 03/#0$ %�� �	���� ����	�� ��� ���
 ������ ��	
��� �
	��
��	� ����� ���
��� �
�� �
��	�	� �	� ��	
���� ������ ��� 	�����$ �� ��� ����� ����
 ��	 ��
�����	�� �
 �� �
�� �
�� ���	 ��� ���� ����
 /� C 0� ���
����	�� ���
 �	������$ %�� ���� ���� �	 /60 �����	�� � ��

� �

��� �	���� �� ��� ���� � ��	 �
 �� �
 ���� ��� �
 ����
�
������	� ��� ��� ����$ ��	�� ��� 	
�� ��� � ��	��� �������
��������� ��� �	���� ����	�� �������� �
�����
	� �
 ��� ����
�������� �	������ �	 ��� 	
��>� ��������� ���� ����������
������� �	 � ��
�
	��� ��������
� ��� ��	�
� 	��
��$

0 �� ���-�� ���� �1�������

0!� �#�(&��#$	 ���(%

�	 ���� �����
	� � ������
�� ���
����� �	� ���
�������
�	������ ���
��� ��������
	� ���� ��� �����	
	 ���
7����� �����
��� �	 ���	�3�����	 �������� ��������
	 ��	3
����� � "!$ �� ���������� � 	
��� �	 � �	��
���� ��	�
�
�����
	
��� � �����
� ��(� � , �$ ���� 	
�� ��� �
���	������
	 ��	�� 7$ 1
� � �	��
���� ��	�
� ����
���	��
��� 	��
�� �
		�������� ��
	�� � ��	���
	
� ��� �������
	�����
� 	�����
��
� � 	
��� ��	
��� �� ��������� �4

� � �

��
� ���� ���

��	�� ������� �
���	�����
	 ������	� ����	� �
����
	
��� 	��
�� �
		��������� �
	�� ���� �
 �
	����� � �	�
	
� �� 7� �	� � ����������$ %��� �������	� �� ��������
���
��� ��������
	� �	� � ������
�� ��	 ����������(� �
�	��
�� 	��
�� ��	���� �� ��� ��	��� ��������� �$

�	 ���	������ ���� �	� ����� ����
� ��	 �� �������	�$
%��� �� ���������� ���� �
� �%�.3%� ���� ��� ����� ����

	�� 	���� �
 �� ���� �
 ��	�
�� � �
	� �	� ������ ���

B %��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887

158

goodelle
Oval

�
������ �������	� �	 � ���������� �������	����
	$ �	
��
��������
	�� � ���� ��
��	 ��� ���� %� === ����

�
%���� �
� �
�� ���� �	� ����� ���� ���� � D $ %���� "
����� ���
���� ��������
	 �����	��$ %�� ����
� ��� ��	�
�
	��
�� �� ���� ����� �
� � D ==� � ���� � D "=$
1�������
���
�� ����� �	������ � +�.23���� .2+�
������� �
 ��� @+1 /����������� �

���	���
	 ��	���
	0
�
6="$ $ %�� 	
�� ��
���� �
 ��� �
� ���� �
�	�� ������� �	
���	� �	� ��	�� "= �	�
�����
	 �������
� �=)= ����
/�	�����	� ��� �������0 �
 ��� ���� ��	� ��� �	 �	���������
�����	�
� ; ���
	��$ %�� 	
�� ���	� ��� ���� ����
 ����
��
�� �� ��� 	
� �������� �	� ������� �
� "= ���
	��$ %�� ���� �
�
��� ���� ���	����� ����
�� �� ���� ��
�� #)= ���
	��$ %�� ����
��	� �� ��� ��	�
� 	
�� �
����� ��
���� �
 ��� �
��
� �����
�
�	��
� ��� �����$ �� ����
������� ���� ��� ������� ����
��	��� �� �����	 ��, �	� ����	 �
��$ 2�� ���
���� �������
��� ��������
��� == ��������
	 ��	�$

+������� ��� 	
��� ���� ���
	 ��� ���� �
	���� �
��
�	���� ���	 ���
	�� ���� ��� 	
�$ 1
� ��
��
	 ��� ����� ��
�� ����� �
 ��� �	�����
� ��� �
��� ��������
	 ���� ��	��
����� ��
	��
	� �
���	�����
	 �����$ %�� �����
� � ��
���� ��� ���� �
� �%�.3< �	� �%�.3%$ �	 ������
	� �� ��
����� �
 �� � �,���� �
� ��� ��	�� �����	���
	� ���� �� �� (��
$
<������ ��� 	
���
	 ��� ����� ����� ��� ��
�� ���� ���
����	�� ������	����� �	 �%�.3%
� ��� �
 �
�����
	� �	
�%�.3<$ %��� ���� ��� ���� �����
� �� �� ��
��� ��� �� ��
����� �
 (��
$ %�����
��� ���� �
	���� ���� �	����$ 1�	�����
���
���� 	
��� ����� �����	 �	 ��� �
3�
�� �����	 �����
�	� ���� �
�� �� �	� �� ����� �
 (��
$ �	
�� ��������	�
��������
	�� �
	�� ���
�� ��� ������� �	���� �
� ���
	
��� ���� ���
	 ��� ����$ %��� �� ����	������ ���
��� ����
�� ���
���� 	
��� ��� �
	���� ���� �	���� �	� ���
������
�� ���� �������� �	 ��� �
	������� ���	���
$ �� � ���
��������
��� ��� 	
���� ��� �	���� ����	��
��� ����	�

	 ��� ��(�
� ���
������ 	��
��$ %�� ������
� ���	� ��
	
��� ���� ��� 	
� �	 ��� ���� �� ��������� �	 �����
	 ;$

0!� �#�(&��#$	 ���(&��

1��$ 9 ��
� ��� ������� ����� ����	�� ��� �
� �� � ��	���
	

� ��� ����� ����
� �$ %�� ��������
	 �������
� �%�.3<
���
�� �
�����
	� ����� ��� ��� ��� ���
������� �	������
�
/ 0$ �� ���
 �
	����� ���� ��� ����
,�����
	� ���� �	
2���	��, 2 ��� �	���� ����
������ �
� ��� ��
��	 �����	��$
�	 ������
	� � ���� �������� ����� �� ��� ��,���� ����
	
����	 ������
	 �� ����� �
 /"0� �� �����
	� ����
	 �� ��������$
%��
���3���� ����	�� �
� �%�.3< �	 ��� ����
� �
�����
	�
�� ���� ����	 �� /"0� ���� �� ���
 ��
���� �	 1��$ 9$ 1
�
�%�.3%� ��� ����� ����	�� �� ����� �
 ��� ��
��	 �
	�
������
	� ����	 �� /#0$ �� ���� �������� ���� ��� ��
�� �����	
���� �� �	���� 	���� ������$

1
� ��� ���� ������� ����� ����	��� ��� ����
� �
�
�%�.3< ��	 �� ����
,������� ���� �� �
	� �� ����
�
�%�.3%� �	 ���� ����� ��� 	
 �
�����
	�$ %�� ����
	 �� ���
�������� ��
����� �� ��� ���	
������	�� �	 �%�.3<$
8
�� ���� � ���� ���� � ���������� ��
 ����
 ��� � ���3
����
� -��� "$) ?���$ <� ��

��	� � ����
 ���� �� = �����
������� ��� ���
���� ����	�� ���
 ��������� �� ���� ����
�$

1���$; �	� 5 ��
 ��� �������� �	����
� �%�.3< �	�
�%�.3% �� � ��	���
	
� ��� ����
� � �
� �������	� ������

� �$ 2� ����	�� �	 ��� �����
�� �����
	� � �������	�� ���
������
	
� ���� �	 ��� ���	���� �����$ %�� �
��� ���
�������
������ ���
����	�� ��
� /60 �	� �
������ ����	 ���
��
�� �
�����
	��	�� �
 ��������� ������$ 2� � ����������
��� �
	��
��	� ����� ���
��� �
�� ����
��	�	�$ �%�.
������� ������� �	 �	���� ����	�� ��	 ��� 	��
�� �� �	
��� �
	��
��	� ����� ����
� ��� ����$ 1
� �%�.3%� ��� �

�
� ������ ������	
�� ��	 ��� �	���� ������� �) %��� ��
�	���� ��� ���� ���	 �
������ �	 /60 �
� � ������	 ��
�	�
�
���� �������$

���	 �
�����	� 1���$; �	� 5� � ��� ���� �%�.3%
������� �	 ������	������ �
�� �	���� ����	�� ���	 �%�.3<$
%�� ����
	 �� ��� �
��
�	�4 2� ��������� �	 �����
	 #$#� ���
������
� ��� ���� �
 ������� / =0 �	� / 0 �
� �%�.3< �	�
�%�.3%� ������������$ ��	�� �� �� ��������� ���� ���	 �
�� ��

�	� ��� ��� �� �� ����� ����� ����� ��
���� �
� �%�.3% ���	
�%�.3<$ %��������� �� �	
�� �����	��� ��� �� ���� ��
����
�
� �%�.3%$ 1�
� /50� � ������
�� 	
���� ���� � �� ������ �
�
�%�.3%� ���� ����� �� ������
� �	 �����
� �	����
����	��$

������ ��� � �� ��� � � ��� ���� / =0

������ ��� � ��� / 0

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� 9

�/0�� 7
	��������� 	
������

-��' 9' /#
��
 �
��� ���
��� �
 ���'

159

goodelle
Oval

1
� ��� ���� ����� ����	��� �%�.3% 	���� �
 ���� �
����
� � ���� �� ��
�� ���� �� ����� �� ����
� �%�.3<� ���
� �� ����� ������� �� ������ ��
��$ %��� ����� �%�.3%
���������� �	 �����	� �	���� ������ ����� ����	��$ *
�����
��� �������	���� �� ���� 	
�
	�� ��� �	��	��� 	
�� ����
��$ %��� �� 	
� �	 ����� �	 ��� ���������� ���	���

�
	������� ����� ��� ��	 �� ���	�����	� �	 ��	����$ %���
������ ��� ���	������ 	����� ��� ���� �%�.3% ���
���
�%�.3< �	� ���� �� ���� �������	�$ �	 ��� 	�,� �����
	� ����
� �
���	� �%�. ��� ��	����3����� �
�
�
�� ��	���3
��	� �������� ���� ������ �� �	����
������� �
 �� ���
���	�$

2 �� ��� ������ ������

2� ��	��
	�� �	 ��� �	��
�����
	� �,����	� �
�
�
��
��	�����	� �������� ���� �� :21 �	� �728� �

���	���
��� ����
 ����� �	� ����� ������ ���� �	����	� ��������
�
���	�����
	 ��������$ %�� �������	� �	���� ����	��
�	������ ��� ��� 	��
�� ��	����$ �%�.�
	 ���
����
��	�� ��������� ��� ����� ����	��$.
��
���� �� ��	 ��
�	�������� ��� �������� ���� �� :21
� �728� �
 �������
������
	�� ���	� �� ���
 �,��
���	� ��� ��	���� ����	��
	 �	
�
�
�
�� ��	�����	�$ �� ������������ �
���
	 �
���	�	�
�%�. ��� :21$

2!� "�3�'#$� $) ��-

�	 ���� �����
	� � ������� ����	 :21� �$�$� ���
�� �%�.$
1�������
��� � ���
 �	���(� ��� ������
� ���
��������� ��
���� �� �	 ����	���� ������	� ��
�� �	 ��� �	������
� �%�.
�
���	�� ��� :21$ ���� �	 �	������ �� 	
� ��
����� �	
���
����	�� ����� �;!$ %�� :21 ���
����� �� �����
	 �
������
	
� ��� ��	�
� 	��
�� �	 � 	�����
� ������� �����

� ��(� � �� �$ %�� �����
� � �� ��
��	 ���� ���� ��� 	
��� �	 �
���� ��� ��������	� ��
� � �
���	� �����������$ �	 �;!� �� ��
������� ���� � ��� �
 �������4

� � ����
�

	 � ����

2� ���
��� 7 ��	
��� ��� ����
 ���	������
	 ��	��$ %��
������� 	�����
� 	
��� �	 � ����� 2� �� ����	 �� / #0$ <�
�
���	�	� ���� ��� / "0� � ��� ���� 2 �� ������� �
 ���
	��
�� ��	���� � �� �������	� /)0$ �	 ��� �����	���
� ����
������ � ��

�� / #0 �	� /)0 �
 �
�� ��� ��������$

� � �

��
� ��� ����

� � �

��
� ����

��	�� ��� 	
��� �	 � ���� ��� ��������	� ��
� � �
���	�
������������ � ��	 ��� ���� ����	��	�� �
 �	������ ���
	��
�� ��������$:21
	�� �����
	� 	
�� ���� �	 ����
����� ���� ���
���� 	
��� ���	 ����� ����

��$ %
 ����	��

�� ��� �	���� �
	������
	� ��� �����	
� ������� �
����3
�	� �� �
����� �����	 	
���$ �	 ��� ���
������� �	������� �
��	
�� ��� �	��
������ ����
������
� ���� ��
����
���
������ ��� ��	�
��$ �� ����� ��� � 	
��� �	 � �����
��� 	
�� ��� /�������0
	�� ���	 ��� ����

	 E���
� ���
���� �	�� ������
��� ���� � ����� �
	���$ %�� �������� �	����
�
������ �
 � ���	���
 ���
�� :21 �
� � 	
�� �	 � ����
��� � 	
��� �� ������
�� ����	 ��4

�

�	

����
�� �

� �

!
� ����

8
 �	�
��
���	��� �
� 	 ���� 	� �
��� 	 9 ����	� ���
�:
������
� �� � 	���	� ���
�) 1
� ��� ������� ����
� �
�	��
���� ��	�
� 	
�� ����
���	�� ��� ��
��������
�
����	� � 	
��� �	 � ���� ��4

"�!� � �!

!�
� ���� ����

%�� ��������
	
� ���� ������
	 �� ������� �
 ����
� ���
������
� � 	
�� �	 �)!$ *
����� �
�� ����� ��� 	
�
�
	���	 �	� 	
��� �� ��� �	� ��� ��
��������
� ����	�
� 	
��� �	 � ���� ���� ��4

"�! ! � �
 � � "�!�
"�! � �� �

�!

!�
� ���

�� ���
� ����

<� �
���	�	� / 90 �	� / 50� � ������ ���� ��� �������
�������� �	����
� � 	
�� ��	 ��		�	� :21 �� �,�������
�� / 60$

�

�	

����
�� �

� �� ���

�
� ��
�

; %��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887

 $ �� ��� ��� ����
� ; �	 ���� ����� �
� ��
���������� �
 ��
�� �
	����
	
��� �
�� /��	
��� �� <0$

-��' ;' ��
�� #
��� �
��! &� 	��"�0' -��' <' ��
�� #
��� �
��! &� 	��"��'

160

goodelle
Oval

2!� �	�&.�#� $) �� �$��#	�
 4#�3 ��-

2� ��������� �	 ��� �����
�� ��������
	� :21 ��������� ���
	��
�� ��	���� �
 �
	����� �	���� ���� �����	� ��� ����
�
�����	� �������� �	����$ �%�.�
	 ���
���� ��	�� �����
�	���� �� �����	� �� �
� ���� ����� ����	��$ �� �	��������
������ ������� �� �
���	�	� �
�� ����
����� �	 �	 ���
�� �

�,��
�� �
�� ����	�� �	� ��	���� ����	��
	�$

�	 :21� � ���� ��	 �� ����� �� ����	�
	� ������� 	
��
�	� ��� �������� 	
��� �����	������� ����
�� ��� ��	���
	3
�����
� ���� ������� 	
��$ 1�
� ���� ������������ �%�. ��	
�� �	��
����� �	 � ���������
���� ��		�� �� �����	� �� ��	

	 ��� ������� 	
��$ �	 ���� ����� 	
��� �����	��� �����	
����� �	� ������ ������� �� �
���	�� �� :21$ %��
	� ������
	
�� �	 ��� ���� ��	� �%�. �	 ��� ���� �� �� ��������� �	
�����
	 #$ %�� �
���	� ��
�
�
�
	�� 	���� �
 �� �
������ �

������� ������� 	
��� /
� �����0 �	�����
� ���� 	
���$

*
����� � 	��� �
 ���	�� ��� �����	��� �� ����
��� ��	���
	�����
� ���	� ������ �	 � ���� �� �
����� �����	
	
���� ���� �� �������� �
 �� F������ ������
	$G �	 ���

����	�� ������
	 ������
� :21� ��������� �	 �;!� 	
��� ����
��� ������ ������ �
 ���
�� ��� ������ ����� �
�� ����
�	������$ %
 ���
��� ��� �	�
	�����	��
� ����	� ��������
�������� ����� 	
��� ��	� ����
��� ��
������� �	� �����	 �

������� �������� ��
� ���
���� ������� �	 ����� ����$ A�
	
�������	� ���� ��
�������� ���� ������ ������� �
 �
 �
 �����

� �����	 � ������ �����
	 ��� �,������ �����	�	� ���� �

����
� �
�� 	
���� ���� �� �	������ �	 ��� ��
�������$ 8
��
���� ���� ��
������ �������� ��� ������ �
 ���� ��� ����

	
�
	��	�
����$

�� ������� ��	 �%�.� �� � ��
�
�� �	
�� ������
������� ���� ���� ����� ���� ����
 ���	��
�� �	� ��� 	
�
������� ��� ��
������ ��������$ �� ������
�� 	��� �	
����
������
	 ������ �
 ��
�� ��� ��������	�
������	��
�
�������� ������� ��
	� ����$ 2� � �
����
	� � 	
�� ����
�	�� �
 ���
�� ��� ������ ����� ���� �� � ��	� �
 ��� �����	�
������ ���	� ������� �%�.$ �� �
�� 	
� 	��� �
 �	
 ���
�,��� 	
�� �
 ������� �� �� ��	 ������ ��� �� F�
���� ��
��� �����	� ������$G '	�� ��� ��	� �� ��� ��� ��� 	��������
�	�
�����
	 �
 ������ ��� ������
	 ��
���� �� �,���	���
	
��� ���� ���	�$ �� � 	
�� ��		
� �
	���� ��� �����	� ������� ��
������� ���� �� ���� /�$�$� ��� �
 �������� ���������
	0 �	�
�����
��� ��� �
��$

���� ���� �
��������
	� �%�. �	� :21 ��	 �� �	��������
�����������$ 2� ���� ���
���
�
	�� �	
�� ������ �������
� ��	 ��������
����	 / &0 �
� ��� �������� �	���� ���	
� �
	
�� �	 � ���� ��� � 	
���$ %��� �� �����
	 �,��	��	� /60�
���� ��� ����������
� � ��� ����	 �� / 50$ %�� �,��� ����
�������	�� ���
�������
� ��� ������ ������
	 ��
����
/���� � ��	
��� �����
���� �	
�� �	������
� :210$ 2� ��
�� �����
	 �%�.� � �
��� �
��� ���� ������
	
�������
���	� /60� �� ����� �	 ���	�����$ *
����� ���	�����	� ���
���
������ ������
� ����� ������	�� �� ���� �	� �
��
�� 	
� �
 �
��� ���
������� �	 ������$

�

�	

����
�� �

� �

!

�

�
� �� �� � �� � �

� �
� ��� ����

1�
� / &0� ��� ������� �������� �	����
��� ��� 	
��� ��	
�� ������� �� ���	� ����� �
 /"=0� ��� ���� �� �� �� �
	�
�	 �����
	 ;$ $

�

�	

� �� ���

�

�

�
� �� �� � �� � �

� �
� ��� ��	�

1
� ��� ��	� ����� ����	��
� ������� ���� �������� ���
�,������
	� ��� �,����� ��� ���� �� ���
	�� �
� �%�.�
����	 �	 �����
)$ $ %�� ����
	 �� ���� ��� ������ �������
������ �� � ������� 	
�� ���� �� ���	� �%�. �� �
	� �� �����
�� 	
 �	�������	�� ��
� ��� ������ ������
	 ��
����$ 2� ����
������
	 ��
����
����� �� � ��������� ���� �� ���� ������
���	 ��� ��	� ����� ����� ���� �	�������	�� �� 	���������$

2!� �'�&(��#$	 $) �� �$��#	�
 4#�3 ��-

�� 	
 ������
�� ������ ������
� �%�. �
���	�� ���
:21 ���
��� ��������
	�� ����	 ��� ��� �����	��
� %�����
�	� "$ %
 ����� ��� ����	��
	�����
� ��� ������� � ����
��
��	 � � �� � 	$ %��� �
�����
	�� �
 � 	��
�� ���� ��
����� �	 ��� �
	��
��	� ������ ��� � ���� �������� ���� ���
���
����� �	� �	������ ���

�� ��	� ��	 ����� �� ����
�������$ 2�� ���
���� ������� ��� ��������
��� �=== ������3
��
	 ��	�$ �	 1��$ 6� ��� �������� �	���� �� ��
���� ������ ���
	��
�� ��	���� � �
�
�� ������ ������
� �%�. H :21$
�� ��	 ���
 ������ ��� ������
�
� ���� �%�. ���
��
:21 ��
� ���� ������$ <� �
�����	� /60 �	� /"=0� � ��� ����
��� ������
�
� �%�. ��
	� �� �������������� ��������	� �

����
� �%�.H:21���2 D � D = �	� D =$ 2���
���� � D =
��� 	
 �������� ���	�����	�� �� ������� �� ���
� �� �

�������(� ��� ������
�
� �%�.
	 ��� ���� ����� �� ����

� �%�. H :21$

2 	
�� ����� �
 ���
�� ��� ������ ����� � ��	�
� ����
�#$% �	 ��� ��	��
� 9 � # ��	����$ 1
� ��� ���
�������
������� � ���� ��� D = ��� �
 ��� �
����,���
� �
����	�
��� ������3������
	
�������$ %��� ������ ��� ��������	����
�	 1��$ 6 �����	 ��� ���
������� �	������ �	� ��� ���������
�������� ��	
��� �� ������� �
� �%�.3< �	� �� ����	���� �
�
�%�.3%$ 1
� ��� ���� �����
� ��� �	����� ���� ����� ��
�%�.3<
������
��� �%�.3%� ����
��� �
�� ��� ����	 ��
/ &0$ %�� ����
	 �� ����� �	 �%�.3%� ��� ������ ���� ��
���� ����
	�
� ��� 	�����
�� �	������� ��� ������
	 ��
�����
���	 �� �� �� 	
� ����
� ��� ���� ������� ����$ �	 �%�.3<� ���
������
	�� ���� �� �� � ����
	�� �

���� 	
��� �	 ���
����$ *
����� �
� ��� ���� �� ��� ����� ����	��
� �%�.3%
�� ������� ���	 ����
� �%�.3<$

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� <

-��' C' .
����#

�
�� ��#��� #
��� !
����� &� � /- D 39 �����
�'

161

goodelle
Oval

%
 �
����� �
�� ������� �
� ������� ����	��� � ����
�	������ ��� ����� �
� �%�.3% ��� � D &"$ %��� ������� �	 �
����� ����	��
� =$&# ���
	��� ���� �� ��� ���� �� ����
�

�%�.3< ��� � D 6$ %�� �	�,������ ������
�
� ���
��������� ����� ��� � D &" �� ��� �
 ��� :21 ������3
������
	
�������$ 2� � ��� ���������� ��
����� ����
���3
���� �
�� 	
� ���� ���� ��� � �	� �	������� ��� �$ 2�
��� �	���� ����	�� ��� �
 �%�. ��� ����� �
� ����� �� ���

������ �	���� �
	������
	
� �%�.H:21 �� �������
�
��	���� �� ��� ������3������
	
�������� �	 ���� ����� ��
�� ���
��� ��� ��-
� �����
� �	���� �
	������
	$

1
� ��� ���� ����� ����	���
	�
� ��� �
 �����	��
/�%�.3%H:21 ��� � D &"
� �%�.3<H:21 ��� � D 60 ��

�
�� �	���� �������	�� ����	��	�
	 ��� 	��
�� ��	�����
��� � ��
��
��� �
�	� �� � D ;"$ 8
�� ����� �
� �����
���������� �����	��� �� �� �	��������� �
 �������� ��� ��	����
���	� :21$ �	������ ��		�	� �%�.3% ���
�� :21� �������
��
���	� ��� ������ ������
	
�������� �� �
�� �	����

�������	�$
1��$ & ��
�� ���
�������
� ��� ������ ������
	 �
�

�%�.3%$ ���	 ��� 	��
�� ��	���� �	�������� ������� ���
����	�� �
�� ������	���$ �	 ������
	� ��� ������
� ���

������� ���
��� ���������� �
�� ��
	
�	��� �	 1��$ 6

��	 ��� ���
���� �	���� ���������$ 1
� �%�.3<� ���

������� �� �
	��������� ���
 ��� �����
� � �	� �� 	
�
������� �	 1��$ &$

�	 ��� �����
�� ��������
	�� � 	
�� ����� �
 ���
�� �
������ ����������
���	 /��
�� ����� 9 ��	����0$ �	 �
��
��������� ���	���
�� ��� ������
	 ��
���� �� ������ �

������ ��

� ���� ������ ��������� ���� ���� ���
������� ���������$
�	����� � 	
�� �� �,������ �
 ���� �
	��� ��	 ��� �	����
�
	������
	 �� ������� /��	
��	� �������� ���������
	0$ ��
��	 ������
�� �����	 ��� ������ �
� � �
	��� ���� ����
�$

1��$ = ��
� ��� �������� �	���� ����	��
� ��� �������	�
������� �
� �#$% �	 ��� ��	��
� 9 � �
��$ %�� ������
�
���
������� �� ������� ������� �	 ���� ����� �,���� ��	
��� ���
���� �	���� �� �,������� �
$ 1�
� / &0� � ���
 ���
���� ��� ���
���� ���� � ��	 �
 �� ���� ��� 	
��� ������	�

��� ��� ���� ���� ���� ��� �������� �	���� �� ����	 �� �$
2���
��� 	
� ��
	 ����� � ���
 �������� ���� ��� ��	�
����� ����	�� �� ������� �
 ����
� �%�. ��
	�$

1��$ = ���
 ��
� ��� �������
� :21 ��
	� �	�� ��

�,����	�� ���
��� ��� ������
�
� ���� �%�. �
�����
	��

�
 ��� �
�	�
	 ��� ������
� �%�. H :21 ���� � D =$

<� �
���	�	� �%�. �	� :21 �� �	
�� ������ �������

�
�� 	��
�� ��	���� �	� ���� ����� ����	�� ��� �����3

���� �
 ������� �
	��������� �	���� ����	��$ ���	 �� �

��	������
� �
 ����	����� ���
���� ����	��
	 ��	 ��

������
�� �
� �	���� ����	��$ %�� ���	� ��� �
��
�	���

��	 �
�� ����	��
	� ��	 �� �,��
���� �
������$ 1
� �

	��
�� ��	����
� � D 6= �	� � ����� ����	�� ��� �
�
�

=$&# ���
	�� /�%�.3% ��� � D &"0� ��� �	���� �
	����3

��
	
� � 	
�� �� 9= ����� �
�� ���	 ���
�� �
�
�
��

��	�����	�$ �	 1��$ =� � ��� ���� ���� �� ������� ��
�� �

��� �
�� �
�	�
� �$
'�� ������ ������ ��
����� ��� ��	�
� 	��
�� ��3

���	�� ��� ���� ���,������� �
 ����� �	����� ����	��� �	�

��	���� �
� ����
����$ %�� ������
	� � ������� �	 ���

�����
�� �����
	 ���
 ���E��� �
 �������� �� �����	3�����

��� �,��� ������
	����� �����	 ����� ����� ����������

��	
�� ������ ������ �� ����
��� �	 ��� 	��
��$ 1
�

�,������ ����	 � �
�	�
	 ��� ��,���� ���
���� ����	��

�	� ��� ������� �	���� �
	������
	 ��� 	
��� � ��	

��������� ��� �������� ��	���� �	� �����	 ����
�
� �%�.$

���� ����� �����	��� ��� 	��
�� ��� ������� ��� ��
����	3

��
	�� �
	�����	�� ��	 ��		�	�
�� ������ �%�.H:21

�
�
�
�� ��	�����	� ��
�
�
�$

5 �����������

�	 ���� ������ � ���� �	��
����� �%�.� � �
�
�
��

��	�����	� ����	���� ���� ������ �
�� ����	�� �
� ����

����� ����	�� �	 ��	�
� 	��
���$ �� �������� � ����	�

���		�� �� ����	� � �������� ����

������	� �� � �
��

���� �����$ A�
	 �������	� � ����� �������� �� ���	�
	

��� ������� ����
� ���� ����� ����
� ��� ������� ����

���	������
	�$ %��� ����� ������� ��	 ���� ��� �
��
�

� ����
	 ������
� ������ � �
	�� �������	� �	 �

�����	��
� �%�.$ '�� �
�
�
�� ��	�����	� �� �������3

����� ������ �
��� ��
�� ���	���
� ���� ��� 	��
��

���	�� �
��
� ��� ���� ����	� �
� ���	�� �
 �����	�

���
�� �
�����	� �������$

C %��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887

-��' E' �
�!

�
����� �#
�
�! &� 	��"��' -��' 38' .
����#

�
�� ��#��� #
��� !
����� &� � /- D 9 ����'

162

goodelle
Oval

������� ��� ����
	3�����
� ��� �
	�3����� �����	� ��

������
� ����	��
	 ��� ���������
	 ���	���
$ ��
�������

���� ��	 �
���	�	� �%�. ��� � �
�
�
�� ��	�����	�

������ ���� ��������� ��� 	��
�� ��	����$ %�� �������	�

������ ������ �,��
��� �
�� ����� ����	�� �	� 	��
��

��	����$ *
����� ������ ��	���� ��
��� �� ���������

�	� ���� �����	�
� �%�. �� �
�� �	���� �������	��

����	��
	 ��� ������
� ��� ��
�
�
�
�������$ 1
�

��������� �����	��� ��� �
���	���
	
� �%�. �	� :21 ��	

������ ��� �	���� �
 �����	�
� ����
� ����
� � 	��
��

���
�� �
�
�
�� ��	�����	�$ 2����	�������� ���� ������� �	

�	 �	������
� ��� ������� 	
�� ��������
� � ����
� ==$
2� �����	 ����� ��� �����	��
�
�� ��
�
�
� ��	 ��

�������� �
����
	�	� ��� 	��
�� �� ��� �������
������	�

�
�	� �	 ��� ��	����3����	��3�	���� �����	 �����$ �	 ����	���

���� �� -��� ����
� � �
�� ��	���� �	� �����	 �����
��� ����

�� �������� �� ��� �������� ���������
	� ��� ���
��
� ���

	��
��� ��� �
��
� ��� 	
���� ��� ������� 	��
�� ���������

�	� ��	�
���� ����
��$

�������6 �

����1���� �- ,� ���� ������

1����� � ������ ��� ����� ����	�� /�� ����	�� �	 �����
)$ 0

�
� �%�.3<$ �� ����� ��� 	
 �
�����
	�� ��� ������ ��	�� ����

�	 ���	
������	� ����� �� �������� � ����
	 ������$ 2�

�

	 �� ��� �	�����
� �������� ���� ���	
������	�� ��� ��	�

�� ��� ��$ %�� ����� ����	�� �� ���� � 	�����
� ����
	

����
�� ���� ��� ���� �
 ���	���� ��� ����
	 ���� �� ��������

�	� ��� ���� �	 ���	
������	�$ %�����
��� �� �� ����� �

�� � � ���� �	 �	����� ��������
� ��� �	�������
	 �����	�

��� ���� � ��� ��� ��
����	� 	
����
	 �� � � � �� ���$
2� ��� ������ �	�
����	��
� 	
�� ��� 	
� ��	���
	�(���

��� ����
	 ��	��	� ��
���� ������ �� � ��	�
� �
�	� �	 ���

����� �
� ��� ������ 	
��$ 1��$ ��
� ��� 	
�����(��

������
� �� �
� �������	� ����� �����
� ��� ����
	 ��	��	�

��
����$ �	 ��� ����
	 ���� �� ������� � /� D $$=0� ��� �����

����	�� �� ����� �
 & � �� ��� � �$ %�� ����
	 �� ���� ����
	

&� � �� ��� �����
	� �
 ���� �	������ ����	 ��� �	������
�

��	��� ��� ��	 ��� ������ 	
��>� ����
 ��
	$ %��

��
��������
� ���	� �	 ����
	 � �� ����� �
 ��� ��	���
�

���� ����
	 ������� �� �$ 2� � ������� �
� � I ���� ���

����������
� �� ��� ������� ��
� 1��$ ��4

	 ��� � ����� � ������

�

	 ��� � ' � �� ������ � ��
� ' � ����(

	 ��� � �(� �� � �� ������ � �����������(���

�

����
���

(� � � ���� ����
��

	

�

����

<����
	 ���� ������
	 �	� ����� �
�� �������� ���

������� ����� ����	�� ��� �
� ��	 �� ���������� �� ���	�

����� �
4

��� � ���� � � � ��

�
�) � �� �� �)

� � �
� �

� * � ��� *� � � �
�

� � � �

����
%�� ��������� * �	�)� ���� � �	��
����� �
 ��������

��� 	
����
	
� /2"0� ��� ����	�� ��4

* � � � ���� ����
��

�(� ����

) � ��� � �� ���� ����
�� ���� �������� ����� �	 ��������� ���	���
�� ��� ���� ����

�	 /2"0 �� 	���������� �������	� �	4

��� � ���� � � � ��

�
�) � �� �� �)

� � �
� �

� ����

�	 ������
	� � �� ��������� ������	������ ������ ���	 ���

���� ���� � ��	 ������� �������� ���� �,������
	 �
4

��� � ���� � � � ��

�
�)

� � � ��

�
� � ��� ��� � ����

����

1�
� /2 0 �	� 1��$ =� � ���
 ����	 ���� ��� ��,����

����� ����	�� �� ����� �
4

����
� � �(� �� � �� ������ ����

1�������
��� = �� ��,���� ��	 /2#0 �� ����� �
 =$

%�����
��� � ��	 �
�	� ��� ����� ����	�� ��4

����
� � � �)������ ��
�

�� ��� �	�����
� ��	��
�� ����
	� �
� ���� ���� ����
�� ���
������ �� �����	���� �
 ���� �������� �� �	���� ����� �� �
�
�����
	
� ��� ������ �
� �
�������$ *
����� �	 ��� ����

� � �
�����
	
� �
������� ������� ��� �������� ���

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� E

-��' 33' /������� �& ��
 �
��� ���
��� �& 	��"�0 ������� ����������'

163

goodelle
Oval

����	�� �� ���� �� � �,����	�� �	 �����
	 #$#$ �	 �	�
����� ��� �	�����
� ��	 ��
� ��� ����
	 ��	��	� ��
���� �����
�!+�
� � ����	 �� /260$ ���	 � ����
	 �
�����
	
������ ���

����� ����	�� �� ���
 ����	 �� ���� ������
	$
%�� �	������
� �%�.3% �� ������� �
 ��� �
�����
	

���	���
 �	 �%�.3<$ 1
� ��������	� 	
��� �
����	��� �
��
�
�� �	 �	��������� ������
�$ %�� ������ ������� ��� �
	�
�� �� �� �	�������� �
� �� ����� �	 �	������ �� $ 1��$ " ��
� ���

���3���� ���	���
� ���� ��� �
	� ������ �

 ���� �
 ��
�������� �	 ��� ����� ����� ����
�$ 1�
� ���� ������� � ���
���� ��� ��	���� �
	� ������
	 �
 �����	��� �������
	 ��
����� �
 /2&0� ���� �� ������
�� ���
 ��� ����� ����	��$

�� � � � ��� � � � ��� ����

�������6 "

����1���� �- ,� ������ ����� ����

���	 ��		�	� �%�.� ��� �
��� �	���� �
	����� �� � 	
��
����	� � ���� �	������ � ��	 �� ��
��	 �� �	�
 �

�
��
	�	���
	� �
� ���� ������	�� ��	�$

��� � � �,+'�� � � +�+� ���	�
������
	 /2 0 ������� ��� �	���� �
	������
	 �	 ���

����� ���	�$ %�� ����� ���� ���
�	�� �
� ��� �����	�	�
������ ���� 	�� ��� �� ����	 �� /2 "0$ 	�&
����� ��	
��� ���
�
�� ����	� ��� ����
��� �����	 �	������� ���� �
	���	�
�
	�������
	�
� ���� �	� ������� �
��$ %�� ���
	� ���� �	
/2 0 �������	�� ��� �	����
� ��	��	� ����
	 ������� �	�
�����	�	� �
� ��� ���	
������	� /�%�.3<0
� ��� �	����

� ��	��	� � �
	� /�%�.3%0$ �� ������
�� �
�����
	�� �
 ���
�	���� ���	� �� �	 �	�����
�� ���� ��� ������� �
��
	
����� ��� �
	�������
	�
� ���	������
	� �������
	� �	� ����
�
��$ 	
����� �� ��� ����� �
��
� ��� ����� ����
$

�,+'�� � 	�� ��� � ��� �
���� � 	
����� � �
���� �����

	�� ��� �
	
����� � �� � ���� � 	�&
����� � ���

�
� �����

%�� �	���� �
	������
	 �	 ��� ���� ���	� �� ����	 ��
/2 #0$ �	 ���� ������
	� � +�+ �� ��� �
��� ���� ��� ����
 ��
���	��
	 �	 ��� ���� ���	�$ 2� � ������� 	 +�+�� �
	���	�
�
	�������
	�
� ������ ���	������
	� ������ �������
	� �	�
���� �
��$

� +�+ � 	
����� � ��� � +�+� � 	 +�+�� � � +�+� �����
1
� ����
� �
������
	� � 	
�����(� ��� �	����

�
	������
	
� �%�. �
 � ���	���
 ���� ����� ��
	��

	� ����
 ���� �� 	���� �	 ��� ����� ������ ��� /2)0 �	�
/2 90$ �	 /2 90� 	� �� �� ����	�� �	 �����
)$"$

�

�	

� ��� �

���&-&�+�
�� �

� �����

���&-&�+�
�� � � 	� � �� �����

2� �,����	�� �	 �����
)$"� � ����
,����� 	 +�+�� � 	�

�	� 	
����� � 	�&
����� � 	�$ 1�������
��� � 	
�� ����
	
����& .. 	& �& � �� ��� ���� ���
� �� �
 ���� ��� ��������
�	����
� /2)0 �� /2 ;0� ����� ����
������ ������������
	�$
J�������� � �	� � ��� ����	�� �	 /)0 �	� /90$

�

�	

� ���

�
� �� � +�+

�
� �
���

�
� �� ���

�

� �
� �� �� �����

�	 ���� ������
	� �
��� �� ��� �
��� ���� ���	� �����	� �� ���
��	� �	 ��� ����� ���	� �� �	 �	�����
�$ %�� ����

� �
���
�	� ��� �
��� ���� � ��	 �� �������	 �� ��� ����� ������	���
�� � ����� ��� ������
	
�
	� ����� �� $ ���	 � �� 	
� �

������ � ��	 ���
 ���� ��� �
��
�	� ������������
	4

�� ���

�

� �
� �� �����

���������� � +�+ ��	 �� ����� �� �	 ������
� �������
������
	 ����
�� ���� � �����
� ���� ���	���� ��������
	�
��	� �����$ +
	�����	���� ��� ������
	
� ���� ��� ����3���	�
����
 �� ���	��
	� ���� � ����	� �� �� �� �����	 �� /2 60�
�
�����
	��	� �
 /;0$ *���� �� �� ��� ����� ������	��$ ��
��	 �� ������ ���	 ��� ����� ������	�� �� � 	
�� ���� ��
��	 �� �� ��� �	�����
�� ��� �������
� �	 �	�	��	��� ��������
���� ����� � �
�����
	 /�%�.3<0
� � �
	� /�%�.3%0$

� � � +�+
�

� �� � ����
�� ���
�

1�	����� �� ����	�	� � �� �	 /50� /2 ;0 ���
���4

�

�	

� �

�
� �� �� � �� � �� �� �����

�� ��� ����� ����

��� �� ���	��
��
	�� ��� ����
����
 �� ���	��
	� ��� ��������
	 �� ������� �
 ���
	� ��
��$
���� ��� ���� ������������
	�� ��� ��	�� ������
	 �� �,�����
��� ���� �� /2 &0$ %��� �������
	 �
�����
	�� �
 �%�.3%�
���� ����� �� 	
 	��� �
 ����� ��� ����� ����

	
	��
��� ���� ����
 ��� ���	 ���������$

���������� ���

%��� ����� �� ����� �	 ����
	 �������� ��	��� �� ��� A�
'�����
� 8���� �������� �	� ��� A� @���	�� 2���	���
�������� 7�
-���� 2��	�� 72+E+ �	� ��	���% ��
�����
���
��� A� 2�� 1
��� �������� ���
���
�� �
	������ 1#=;="3

38 %��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887

-��' 37' /������� �& ��
 ��������
 �
��� ���
��� �& 	��"��'

164

goodelle
Oval

==3+3= 9) �	� 1#=;="3&&3 3=9"&$ %�� ���� �	� �
	�����
	�
�
	���	�� �����	 ��� ��
��
� ��� ����
�� �	� ��
��� 	
� ��
�	��������� �� 	���������� �������	��	� ���
������� �
������
�
�	�
�����	��� ������ �,�������
� ��������
� ��� '8��
@2�72� 2�� 1
��� �
�� ���
���
���
� ��� A� :
���	��	�$

��-�������
� ! ?$ �
������ K$:�
� J$ 2�������� �	� :$ 7
����� F7�
�
�
�� �
� ����3

'���	�(���
	
� � �������� ��	�
� 8��
���G *��� <
����	� !���)
2	�	>��
� �
�$ 5� 	
$ 9� ��$;3"5� '��$ "===$

��� �$ +����� :$ 7
����� �	� K$ 2���� F����3'���	�(�	� @����������
��	�
� 8��
����G �<*�?�
 *��@� ���) A����	� ���)� ��$ ""&3"#5�
2��$ &&&$

��� @$ �����	 �	� �$:
��	��	� F8�,� +�	���� +�����	���4 ��������
+

���	���
	 �	 ��	�
� 8��
����G <���) 2���!�� &,,,� ��$ ";#3
"5=� 2��$ &&&$

��� J$ �����	����	� +$ ���������� �$ 7���� �	� .$ �����������
F�	����32��� �������� ��	�
� 8��
����G *��� ����	� <���
�%
����� �
�$ &� 	
$ "� ��$)=39=� .��$ "=="$

��� <$ +��	� ?$ K�����
	� *$ <��������	�	� �	� �$.
����� F���	4 2	
�	����3�������	� +

���	���
	 2��
����� �
� %
�
�
�� .��	��3
	�	�� �	 2� *
� �������� 8��
����G <���) 2���!�� '--&� ��$ 5=3
6)� K��� "== $

��� L$ M�� K$ *������		� �	� @$ �����	� F:�
������3�	�
���� �	����
+
	�������
	 �
� 2� *
� �
���	��G <���) 2���!�� '--&� ��$ 5=36)�
K��� "== $

��� K$3*$ +��	� �	� �$ %��������� F�	���� +
	�����	� �
���	� �	
�������� 2�3*
� 8��
����G <���) *�6A!A2 '---� ��$ ""3# �
.��$ "===$

�	� K$ ������� K$ 2����� K$�$ �� ������ �	� @$ 7����� F7��
����
4 2�3
*
� �������� 8��
���	�
� A������
�� �
3�	���� ��	�
�E
.
	��
� 8
����G <���) *��� !� 8������ +��* '---� ��$ &3 "� 2��$
"===$

�
� �$ ����	�� *��	(����	� 2$ +��	�������	� �	� *$ <��������	�	�
F�	����3�������	� +
���	�����
	 7�
�
�
� �
� �������� .���
3
��	�
� 8��
����G <���) B	�	�� *��@� !���) ����
� ���
��
� '---�
K�	$ "===$

���� +$:�
� �$ N�
	�� �	� K$ ������� F�
37
�� @���������� .2+
�
� 2� *
� ��	�
� ����
 8��
����G <���) *��
��
� <
�����	��

����) �C���
��� @-&�� 8
�$ "== $

���� ��	�
��� +
��
����
	� ����4EE$��	�
���$�
�E� L���O
���� �$ <���
���� �$.����� .$ %����� L2 +��	� M$ N�	�� K$.����	��

�	� *L �
	�� F7�����4 2 7������� ��������
	 �	���
	��	� �
�
+
����, ��������G !�����
�� �
�$ # � 	
$ =� ��$ 55369� '��$ &&6$

���� .$ L��
��� 6����	����� �� 2����
 7	��� �����

����) +�+ 7�����
 &&#$

���� .$.�:��		 �	� �$ <
������ F<������� 7�
�
�
�� �
� �
 �	����
@���
���	� �	� 1��,���� 8�����
� @���
���� �	 2� *
� ��������
8��
����G <���) 2���B�� '--&� ��$ #53)9� '��$ "== $

���� F2�* %��	������� @����	��>� :�����G ����4EE$���$�
��
L���O

���� �$ L�� K$ *������		� �	� @$ �����	� F2	 �	����3�������	� .2+
7�
�
�
� �
� �������� ��	�
� 8��
����G *��� *������ @-'� K�	�
"=="$

���� F.�+2 �
��� �� +�
���
�G ����4EE$,�
$�
�E7�
�����E
��������P��	�
�P8��
���$���� L���O

��	� K$ 7�
����� �����	� !�������	������ ����� ��$.�:��3*��� ������ �	
���������� �	� +
������ �	��	����	�� &&9$

�(�� ��3(�/���
�
�#
! ��
 "	�� !
�

�
����� ��� ���!
� &�� ��
 A������
�
 2���
#
���
�� �
�#
� +A2�,� 0
������ �� 3EE<' -��
3EE< �� 3EEE� �
 ���
! �� %"�� +%��
���#
�
���� "��� ��
������� �
��
� �
�#
�� 0
�����,
�� �
��� ������������ �
����*�
� &� ����
��!
�' ��
����� �
 �� ������� � 1�� !
�

 ��
��
 2��#
���� �& ����&���� �� ��� /��
�
��
&������� ��
�
��
&&���
�� �������������
��! �
������� ����
��' 6
 ���
�
�#
! ��

-')'�'� ��
 0'/'�'-'� ��! ��
 2��/ &
��������� �� 3EE<� 3EEE� ��!
7888�
��
���#
��' 6
 �� � ���!
�� �
��
 �& ��
 %���'

1&��#$� �#���#�
�
�#
! ��
 0	 !
�

 &��
��
 �
������� 2��#
���� �& �
�
� �������

�
� �� 3EEC� ��! ��
 "	 !
�

 ��
�
������

����

��� &�� ��
 2��#
���� �& ����&�����
��� /��
�
� +2��/,� �� 7883' 6
 �� ��
����
������� � 1�� !
�

 �� 2��/�
�
������
�������
 ������� �����
���
�' %� 3EEC ��!
7888� �
 ��� ����
! ���� ��
 2��/ &
��������'

��(���3 ��	��#4�&
�
�#
! ��
 0�
�� ��!
"�
�� !
�

� �� ��
 &�
�! �& ������������� ��!
������ ���
����� &�� ��
 %�!��� %�������
 �&
�
��������� 0������ %�!��� �� 7883' 	���

7883� �
 ��� �

� ������� �� "	 !
�

 ��
��
 2��#
���� �& ����&����� ��� /��
�
�' 6��

�
��� ���

��� �
 �� ��
�
�� ����������
����� ��! �
�������' ��
����� ���
�
���
&����
� �� �
��� �
�����'

 �	# ��#'����'�
�
�#
! ��
 0�
�� !
�

 ��

�
������
����

��� &�� %%� A���� �� %�!��
��! ��
 "	 ��! 1�� !
�

� &�� ��

2��#
���� �& ����&���� �� 0
�
�
�' 6
 �� ��
��������
 ��&
��� �&
�
������
����

��� ��
��
 2��#
���� ����&���� �� ��� /��
�
�' -��
3EE7 ������ 3EE;� �
 ��� � �
��
 �& ��

�
������� ���&& �� 0
�� ��������
� �� �
����
!
���������
�
���' 6�� ��
��
�
��� ���
�

��� �
 �� �����
 ��! ��
�
�� �
����
!

��������� ����
��� �������
 ����
��� ��! �
��� �
�����' 6

�
�#
! ��
 2	 �������� 	��
��
 -���!����� �/.��. ���! �� 3EE<
��! ��
 1
��!
�� �& %�!�� ��! "
!�� �� 3EC9' 6
 �� � �
��
 �& ��

%���'

/ -$� �$�� #)$����#$	 $	 �3#� $� �	. �$�%(�#	/ �$%#�7 %&���� '#�#�
$(� �#/#��& �#����. �� ����?==������
'��=������������=!���'

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� 33

165

goodelle
Oval

Topology Management for Sensor Networks:
Exploiting Latency and Density

 Curt Schurgers Vlasios Tsiatsis Saurabh Ganeriwal Mani Srivastava ‡

 Networked and Embedded Systems Lab (NESL), Electrical Engineering Department, UCLA
 56-125B Eng. IV, UCLA -EE Dept., Los Angeles, CA 90095
 {curts, tsiatsis, saurabh, mbs}@ee.ucla.edu

‡ Please send all correspondence to Mani Srivastava

ABSTRACT
In wireless sensor networks, energy efficiency is

crucial to achieve satisfactory network lifetime. In order
to reduce the energy consumption of a node significantly,
its radio needs to be turned off. Yet, some nodes have to
participate in multi-hop packet forwarding. We tackle
this issue by exploiting two degrees of freedom in
topology management: the path setup latency and the
network density. First, we propose a new technique
called Sparse Topology and Energy Management
(STEM), which aggressively puts nodes to sleep. It
provides a method to wake up nodes only when they
need to forward data, where latency is traded off for
energy savings. Second, STEM integrates efficiently
with existing approaches that leverage the fact that
nearby nodes can be equivalent for traffic forwarding. In
this case, an increased network density results in more
energy savings. We analyze a hybrid scheme, which
takes advantage of both setup latency and network
density to increase the nodes’ lifetime. Our results show
improvements of nearly two orders of magnitude
compared to sensor networks without topology
management.

Keywords : Sensor networks, energy efficiency, topology
management.

1. INTRODUCTION
1.1. Sensor Networks

Advances in microelectronic fabrication have
allowed the integration of sensing, processing and
wireless communication capabilities into low-cost and
small form-factor embedded systems called sensor nodes
[1][2]. The need for unobtrusive and remote monitoring
is the main motivation for deploying a sensing and
communication network (sensor network) consisting of a
large number of these battery-powered nodes. For

example, such systems could be used either outdoors in
inhospitable habitats, disaster areas, or indoors for
intrusion detection or equipment monitoring. The nodes
gather various sensor readings, process them and forward
the processed information to a user or, in general a data
sink. This forwarding typically occurs via other nodes
using a flat or clustered multi-hop path [3][9]. Thus a
node in the network essentially performs two different
tasks: (1) sensing its environment and processing the
information and, (2) forwarding traffic as an intermediate
relay in the multi-hop path.

However, the convenience of autonomous remote

monitoring comes at a price: an extreme design focus
must be placed on energy efficiency as the sensor nodes
operate on a small battery with limited capacity [1][2][3].
It is important to view the problem as one of extending
the lifetime of the network, rather than just that of the
individual nodes. Thus, in addition to improving the
efficiency of the nodes, techniques that tackle the
problem on the level of the entire network are necessary.
This is especially true for the traffic forwarding
functionality of the network, as the main energy
consumer in a node is the communication subsystem
[1][3][4]. Our paper explores this category of network-
wide techniques, more specifically dealing with topology
management.

1.2. Topology Management

Topology management is an important issue because
the only way to save power consumption in the
communication subsystem is to completely turn of the
node’s radio, as the idle mode is almost as power hungry
as the transmit mode [4]. However, as soon as a node
powers down its radio, it is essentially disconnected from
the rest of the network topology and therefore can no
longer perform packet relaying. For simplicity, we refer
to this state as the node being asleep, although only its
radio is turned off. The sensors and processor can still be
active, as they are much less power hungry.

166

goodelle
Text Box
Appendix J:

The goal of topology management is to coordinate
the sleep transitions of all the nodes, while ensuring that
data can be forwarded efficiently to the data sink.
Existing topology management schemes, such as the
ones described in references [5] and [6], are based on the
observation that in typical scenarios, some nodes can be
asleep without sacrificing significant data forwarding
capacity. As density increases, more nodes can be
sleeping, resulting in further energy savings. However,
major savings would require extremely dense networks,
as we will illustrate in this paper.

We propose a different approach to topology

management, which exploits the time dimension rather
than the density dimension. Strictly speaking, nodes only
need to be awake when there is data to forward. We refer
to this situation as the network being in the ‘transfer
state’, and in many practical scenarios, this is a rather
infrequent event. Most of the time, the sensor network is
only monitoring its environment, waiting for an event to
happen, and nodes can be asleep. For a large subset of
sensor net applications, no data needs to be forwarded to
the data sink in this ‘monitoring state’. Consider for
example a sensor network that is designed to detect brush
fires. It has to remain operational for months or years,
while only sensing if a fire has started. Once a fire is
detected, this information should be forwarded to the
user quickly. Even when we want to track how the fire
spreads, it probably suffices for the network to remain up
only for an additional week or so. Similar observations
hold for applications such as surveillance of battlefields,
machine failures, room occupancy, or other reactive
scenarios, where the user needs to be informed once a
condition is satisfied.

In the monitoring state, no communication capacity is

needed, in principle at least. As there is no data to
forward, the communication energy could be completely
eliminated, by simply turning off the radios of all nodes.
If the need for data forwarding is very rare, the energy
savings could be phenomenal. However, there is a
crucial caveat: if a node detects an event, it cannot
forward the data to the user since all the nodes on the
multi-hop path are asleep. If a node has turned off its
radio, it will stay completely oblivious of the efforts of
other nodes to communicate with it. This is the main
dilemma in topology management for sensor nets: a
node’s radio should be turned off to save energy, yet be
left on so the node can know when other nodes need it to
forward their traffic. Our topology management scheme,
called STEM (Sparse Topology and Energy
Management), solves this issue and trades off energy
consumption versus latency of switching back to the
transfer state.

Furthermore, we would like to develop a topology
management scheme that marries the benefits of both
classes discussed previously, namely those that exploit
network density and those that exploit setup latency.
Ideally, this hybrid solution combines the savings in both
dimensions fully, such that a ten-fold energy reduction in
both schemes separately would result in a combined
hundred-fold reduction. This basically requires these
base schemes to be orthogonal in using the independent
dimensions of latency and density. We propose such a
very effective hybrid scheme in this paper, by combining
STEM with techniques that leverage the network density.

2. RELATED WORK
For routing in sensor networks, two alternative

approaches have been considered: flat multi-hop and
clustering. Although STEM is applicable to both of
them, we mainly focus on flat multi-hop routing [3]0[8].
For clustered approaches [9], which are possibly
hierarchical, our scheme can be used to reduce the
energy of the cluster heads, although the gains are
expected to be less dramatic here.

Recently, topology management techniques, called

SPAN [5] and GAF [6], have been proposed for flat
multi-hop routing. They operate on the assumption that
the network capacity needs to be preserved. As a result,
the energy consumption is approximately the same
whether the network is in the transfer or monitoring
state, as no distinction is made between them. Both
techniques trade off network density for energy savings.
The performance of STEM is independent of network
density. It operates in an orthogonal dimension, that of
setup latency. Our hybrid scheme, which we describe in
section 6, leverages both network density and latency.

With SPAN [5], a limited set of nodes forms a multi-

hop forwarding backbone that tries to preserve the
original capacity of the underlying ad-hoc network.
Other nodes transition to sleep states more frequently, as
they no longer carry the burden of forwarding data of
other nodes. To balance out energy consumption, the
backbone functionality is rotated between nodes, and as
such, there is a strong interaction with the routing layer.

Geographic Adaptive Fidelity (GAF) [6] exploits the

fact that nearby nodes can perfectly and transparently
replace each other in the routing topology. The sensor
network is subdivided into small grids, such that nodes in
the same grid are equivalent from a routing perspective.
At each point in time, only one node in each grid is
active, while the others are in the energy-saving sleep
mode. Substantial energy gains are, however, only
achieved in very dense networks. We will discuss this

167

issue further on in this paper, when we integrate STEM
with GAF.

An approach that is closely related to STEM is the

use of a separate paging channel to wake up nodes that
have turned off their main radio [10]. However, the
paging channel radio cannot be put in the sleep mode for
obvious reasons. This approach thus critically assumes
that the paging radio is much lower power than the one
used for regular data communications. It is yet unclear if
such radio can be designed. STEM basically emulates the
behavior of a paging channel, by having a radio with a
low duty cycle radio, instead of a radio with low power
consumption.

The work of McGlynn et al [14] describes an

algorithm that resembles STEM. However, it is designed
to discover the neighbors of all the nodes some time after
the network deployment. The goal is to let the network
be dormant during deployment, and once the discovery
phase starts, learn the complete topology with a high
probability. In principle, this algorithm could also be
used to set up a path like STEM. However, it is less
aggressive, and would result in much larger setup
latency, as a node only sends out setup request
probabilistically. Furthermore, it does not guarantee
discovery of a link.

3. SPARSE TOPOLOGY MANAGEMENT
3.1. Basic Concept

In the application scenarios we consider in this paper,
the sensor network is in the monitoring state the vast
majority of its lifetime. Ideally, we would like to only
turn on the sensors and some preprocessing circuitry.
When a possible event is detected, the main processor is
woken up to analyze the data in more detail. The radio,
which is normally turned off, is only woken up if the
processor decides that the information needs to be
forwarded to the data sink. Of course, different parts of
the network could be in monitoring or transfer state, so,
strictly speaking, the ‘state’ is more a property of the
locality of node, rather than the entire network.

Now, the problem is that the radio of the next hop in

the path to the data sink is still turned off, if it did not
detect that same event. As a solution, each node
periodically turns on its radio for a short time to listen if
someone wants to communicate with it. The node that
wants to communicate, the ‘initiator node’, sends out
beacons with the ID of the node it is trying to wake up,
called the ‘target node’. In fact, this can be viewed as the
initiator node attempting to activate the link between
itself and the target node. As soon as the target node

receives this beacon, it responds to the initiator node and
both keep their radio on at this point. If the packet needs
to be relayed further, the target node will become the
initiator node for the next hop and the process is
repeated.

3.2. Dual Frequency Setup

Once both nodes that make up a link have their radio
on, the link is active, and can be used for subsequent
packets. In order for actual data transmissions not to
interfere with the wakeup protocol, we propose to send
them in different frequency bands using a separate radio
in each band. Sensor nodes developed by Sensoria
Corporation [11], for example, are already equipped with
two radios. We will discuss the benefits of this dual radio
setup in more detail in the next subsection.

Figure 1 shows the proposed radio setup. The wakeup

messages, which were discussed in subsection 3.1, are
transmitted by the radio operating in frequency band f1.
We refer to these communications as occurring in the
‘wakeup plane’. Once the initiator node has successfully
notified the target node, both nodes turn on their radio
that operates in frequency band f2. The actual data
packets are transmitted in this band, or what we call the
‘data plane’.

Figure 1 - Radio setup of a sensor node

3.3. STEM Operation

Figure 2 presents an example of typical radio mode
transitions for one particular node in the network. Some
representative power numbers for the different radio
modes are summarized in Table I. These numbers
correspond to the TR1000 radio from RF Monolithics
[15] where the transmit range is set to approximately 20
meters [4]. This low-power radio has a data rate of 2.4
Kbps and uses OOK modulation.

Table I. Radio power characterization
Radio mode Power consumption (mW)

Transmit (Tx) 14.88
Receive (Rx) 12.50

Idle 12.36
Sleep 0.016

Wakeup plane: f1

Data plane: f2

168

At time t1, the node wants to wake up one of its
neighbors and thus becomes an initiator. It starts sending
beacon packets on frequency f1, until it receives a
response from the target node, which happens at time t2.
At this moment, the radio in frequency band f2 is turned
on for regular data transmissions. Note that at the same
time, the radio in band f1 still wakes up periodically from
its sleep state to listen if any nodes want to contact it.
After the data transmissions have ended (e.g. at the end
of a predetermined stream of packets, after a timeout,
etc.), the node turns its radio in band f2 off again. At time
t4, it receives a beacon from another initiator node while
listening in the f1 band. The node responds to the initiator
and turns its radio on again in band f2.

Figure 3 – Radio on-time in the wakeup plane

In order for the target node to receive at least one
beacon, it needs to turn on its radio for a sufficiently long
time, denoted as TRx. Figure 3 illustrates the worst-case
situation where the radio is turned on just too late to
receive the first beacon. In order to receive the second
beacon, TRx should be at least as long as the transmit time
B1 of a beacon packet, plus the inter-beacon interval TB.

If we were to use one radio operating in just one
frequency band, there would be interference between the
wakeup and data plane. Consider Figure 4, which shows
an ongoing data transfer from node A to B. Node C tries
to set up the link to D, and might not be aware of the
ongoing transmission. During this polling mode, it
aggressively sends beacons in order to avoid missing the
short time D is listening. This way, C will use all the
channel capacity, and essentially acts as a jammer to B.
Despite possible recovery action from the Medium
Access Control (MAC) layer, the data communication
between A and B will suffer from extra delays. We might
allow the setup procedure to be relatively long, as it only
occurs once at the start of a communication epoch.
However, such long disruptions of ongoing transmissions
are typically undesirable. Using one radio that switches
between two frequencies could solve this problem, but in
that case the regular data transmissions need to be
interrupted periodically to listen in the wakeup plane.
This is cumbersome, and as integrated radios are ever
getting cheaper, we have opted for the dual radio setup.
All the results in this paper, however, remain valid for a
single radio that switches frequency, but regular data
communications will be more complex.

Figure 4 – Interference between the wakeup and the
transfer plane in the case of one frequency

Figure 2 – State transitions of STEM for a particular node

Active mode

Polling mode

Sleep mode

Interference

A B

C

D

TB B1

Rx

min TRx

Sleep

Beacon packet

t1 t2

t3

t4

t5

T TRx

Sleep

Idle/Rx
Tx/Rx Power

Power
Time

Time

f1

f2
Idle/Tx /Rx Idle/Tx /Rx

Sleep

169

Even in the case of two radios, collisions in the
wakeup plane are possible. For example, consider Figure
5 that shows a scenario where nodes A and B
simultaneously try to wake up the same target node C. In
this case the beacons from A and B will collide at C.

Figure 5 – Collisions on the wakeup plane

To handle this problem, we add extra provisions to
the basic STEM operation we discussed thus far. A node
also turns on its data radio when there is a collision in the
wakeup plane. It does not truly receive packet, but it can
detect the presence of signal energy, which is similar to
the principle of carrier sensing. In this case, it does not
send back an acknowledgement, as it would likely
collide with that of other nodes that are also woken up
this way. In our example , both C and D turn on their
radio in the data plane, since the beacons from A and B
collide. Node E receives the beacon from A correctly,
and does not wake up, as the beacon tells it that the
intended node is C.

After waiting for a response from the target node for

time T, the initiator starts transmitting on the data plane.
Indeed, the target node will either have received the
beacon correctly or seen a collided packet, as it surely
has woken up once during this period (see Figure 2). In
any case, it has turned on the radio in the data plane. If
there is no collision, we chose to send back an
acknowledgement, since the initiator knows immediately
when the target node is up. This shortens the setup

latency, as will also follow from the analytical analysis
of section 4.1.

If nodes do not receive data for some time, they time

out and go back to sleep. This happens to nodes that
were woken up accidentally, like D. Eventually only the
desired target node keeps its data-plane radio on for the
duration of the data transfer. The regular MAC layer
handles any collision that takes place on the data plane.

4. THEORETICAL ANALYSIS OF STEM
4.1. Setup Latency

Before simulating our protocol, we first develop a
theoretical model of the system performance. We define
the setup latency TS of a link as the interval from the
time the initiator starts sending out beacons, to the time
both nodes have turned on the radio in the data plane.
Typically the target and originator node are not
synchronized, which means that the beacon sending
process starts at a random point in the cycle of the target
node. As a result, the start of the first beacon is
distributed uniformly random in interval T. Figure 6
shows the values of TS, normalized versus the inter-
beacon spacing TB, for different start times of the beacon
sending process. Furthermore, the transmission time of a
beacon acknowledgment is B2 and we use the shorthand
notation B1+2 = B1 + B2.

First, we carry out this analysis for the case where no

collisions take place in the wakeup plane. It is clear that
TS is equal to B1+2 plus an integer multiple of TB. If the
initiator node starts the wakeup process in the region that
is labeled i in Figure 6 (i = 1..K), the setup latency is
equal to i· TB + B1+2 . The reason is that beacon i+1 is the
first one to fall entirely within the interval of length TRx
when the target node’s radio is on. The probability of
being in region i is equal to the length of that region
divided by T. As a result, for T > TRx, the statistics of TS
are derived from Figure 6 as:

Figure 6 – Analysis of the setup latency

A

D

C

B

E

T - TRx

TRx

B1 B1 TB

0 … i 2 1 … K =− +

B

S

T
BT 21

T

170

 (1)

Based on this equation, the average setup latency per

hop can be calculated as being equal to:

 (2)

The variables δ and ε, which we introduced to

simplify the notation of (2), are defined as:

 (3)

 (4)

We have verified that in practical scenarios, the last

term in (2) is negligible, resulting in:

 (5)

In addition, T is typically substantially larger than

TRx, such that we can further simplify this expression to:

 (6)

The above equations are valid on condition that T >

TRx. For the special case when there is no sleep period, T
= TRx, the average setup delay is equal to:

 (7)

Thus far, we assumed that there are no collisions in

the wakeup plane. If setup packets collide in the wakeup
plane, the initiator nodes will eventually time out after

time T, as discussed in the previous section. This means
that the setup latency in this case is equal to:

 (8)

4.2. Energy Savings

Next, we derive expressions for the energy savings
resulting from running STEM. The total energy
consumed by a node during a time interval t can be
broken up into two components, one for each frequency
band.

 (9)

Equation (10) details the energy consumption in the

wakeup plane. The first term accounts for the listening
cycle, where Pnode is given by (11). In this equation P0

node
is a combination of idle and receive power. The second
term in (10) represents the energy of transmitting and
receiving beacon and response packets (Psetup is thus a
combination of transmit, receive and idle power).

 (10)

 (11)

The energy consumption in the data plane is given by

(12). In this equation, tdata is the total time the radio is
turned on in the data plane. As a result, Pdata contains
contributions of packet transmission, packet reception
and idle power.

 (12)

Without topology management, the total energy

would be equal to (13). Although Pdata also contains
contributions of Pidle, we have chosen to split up the
energy consumption in analogy with (12) for ease of
comparison. The main difference is that the radio is
never in the energy-efficient sleep state here.

 (13)

We evaluate the benefits of STEM, by considering

the relative energy, which is defined as:

 (14)

T

BRxT
BSTP 1)21(

−
=+=

T
BT

BBTkSTP =++⋅=)21(

T
BTKBRxTT

BBTKSTP
⋅−−−

=++⋅+=
)1(

)21)1((

Kk ...1=

dataEwakeupEnodeE +=

T
RxTnodePRxTTsleepP

nodeP
⋅+−⋅

=
0)(

setuptsetupPsetupttnodePwakeupE ⋅+−⋅=)(

datatdataPdatattsleepPdataE ⋅+−⋅=)(

datatdataPdatattidlePoriginal
nodeE ⋅+−⋅=)(

original
nodeE

nodeE

E
E =

0

T
BT

T
BTBTT

BST
⋅

⋅−⋅+

⋅

+
−⋅−

−
++=

2

2
)1(

2
1

221 δδ
ε

ε

21 += BST

⋅

+
−⋅−

−
++=

T
BTBTT

BST
2

1
221

ε
ε

ε−
−

++=
221

BTT
BST

TST =

RxTBBBTT
−+⋅+

+
= 212

2

 −−
=

BT

BRxTT
K

)1(

K
BT

BRxTT
−

−−
=

)1(
δ

1BBTRxT −−=ε

171

The energy savings can be evaluated by combining
(9)-(14). Since transmit, receive and idle power are very
similar, see Table 1, we can approximate Pidle ≈ Pdata ≈
Psetup ≈ P0

node ≈ P. Furthermore, we note that Psleep << P,
which allows us to write the relative energy as (15), after
appropriate simplifications.

 (15)

tsetup is the total time spent setting up the link in the

wakeup plane. We define the time to do one setup as
t1setup and the number of such setups per second, or the
setup frequency, as fS. When T is not too small, t1setup is
close to T/2 if there are no collisions, see (6). In case, we
make the following simplifications:

 (16)

 (17)

Similarly, tdata can be split up in bursts of average

duration tburst, where a burst of data transfer requires one
link setup. Consequently, the fraction of time the data-
plane radio is turned on, which we define as α, can be
written as (18). We note that α corresponds directly to
the relative importance of the transfer state.

 (18)

Finally, we call β the inverse of the duty cycle in the

wakeup plane:

 (19)

With the above definitions and simplifications, (15)

can be rewritten as (20) or (21).

 (20)

 (21)

It is clear that the energy savings are larger when β

increases, by extending the period T. This results in
larger setup latencies, as can be seen from (6). The
energy savings are also larger, when the transfer state

becomes smaller, and fewer setups are needed. The last
term in (20) and (21) presents a floor to the energy, as
the best we can do is to have the two radios sleeping all
the time.

Since the node has a finite battery capacity, the

energy savings directly correspond to the same relative
increase in the node’s lifetime, which ultimately results
in a prolonged lifetime of the sensor network.

5. STEM PERFORMANCE EVALUATION
5.1. Simulation Setup

In this section, we verify our algorithm and
theoretical analysis through simulations, which were
written on the Parsec platform, an event-driven parallel
simulation language [12]. We distribute N nodes in a
uniformly random fashion over a field of size L x L.
Each node has a transmission range R.

For a uniform network density, the probability Q(n)

for a node to have n neighbors in a network of N nodes is
given by the binomial distribution of (22), when edge
effects are ignored. In this equation, QR is the probability
of a node being in the transmission range of a particular
node, given by (23).†

 (22)

 (23)

For large values of N, tending to infinity, this

binomial distribution converges towards the Poisson
distribution (24) [13]. The network connectivity is thus
only a function of the average number of neighbors of a
node, denoted by parameter λ.

 (24)

 (25)

Since traffic communication patterns depend solely

on the network connectivity, we only have to consider λ
and not N, R and L separately. This statement was
verified through simulations, and we therefore can
characterize a uniform network density by the single
parameter λ.

† We use the symbol Q in this paper for probabilities, to avoid
confusion with power (denoted by P).

2
2 R

L

N
πλ ⋅=

λλ −⋅= e
n

n
nQ

!
)(

2

2

L

R
RQ π=

 −
⋅−−−⋅=

n
NnN

RQn
RQnQ

11)1()(

P
sleepP

T
RxT

t
setupt

t
datat

T
RxT

E
E ⋅+

−⋅++= 21

0

P
sleepPTSf

E
E ⋅+

⋅
++= 2

2
1

0

α
β

P
sleepPT

bursttSf
E
E ⋅+

 +⋅+= 2

2
1

0 β

11 ≈

−

T
RxT

SfT
Sfsetupt

t
setupt

⋅≈⋅=
21

burstS tf
t

datat
⋅==α

RxT
T=β

172

t
E

(W)

Without STEM

β = 2.67

β = 5.33

β = 13.33

α
1

In our simulations, we have chosen R = 20 m, which
corresponds to the numbers in Table I. The area of the
sensor network is such that for N = 100, we have λ = 20.
Furthermore, our setup includes a CSMA-type MAC,
similar to the DCF of 802.11. Table II lists the other
simulation settings, where Lbeacon and Lresponse are the
sizes (including MAC and PHY header) of the beacon
and the response packets respectively.

Table II. Simulation settings
R 20 m Rb 2.4 Kbps
L 79.27 m TB 150 ms

Lbeacon 144 bits TRx 225 ms
Lresponse 144 bits

The node closest to the top left corner detects an
event and sends 20 information packets of 1040 bits to
the data sink with an inter-packet spacing of 16 seconds.
The total time for the data transfer, tdata , is thus about 320
seconds. Since there is only one data burst, fS is equal to
the inverse of the total simulation time. The data sink is
the sensor node located closest to the bottom right corner
of the field. We have observed that the average path
length is between 6 and 7 hops. All reported results are
averaged over 100 simulation runs.

5.2. Simulation Results

Figure 7 shows the normalized average setup latency
per hop as a function of the inverse duty cycle β.

Figure 7 – Average setup latency of STEM

Clearly the simulation results, denoted by the
markers, agree well with the theoretical analysis. We
observed that the exact result (2) and simplified
equations (5)-(6) resulted in virtually indistinguishable
curves. This confirms that the applied approximations
are indeed appropriate for the chosen settings.

In Figure 8, the normalized total energy is plotted
versus 1/α. As defined in the previous section, α
represents the fraction of time in the transfer state. As a
basis for comparison, we included the curve for a scheme
without topology management, which corresponds to
(13). For fair comparison, there is only one radio in this
base scheme, which is never turned off. The other curves
represent the performance for STEM with different
values of β. The theoretical results, plotted using solid
lines, are obtained by multiplying the curve without
topology management by E/E0, given by (20).

Figure 8 – Relative energy savings of STEM versus the
predominance of the transfer state

As 1/α increases, the monitoring state becomes more
predominant. We observe that STEM results in energy
savings as soon as 1/α > 2, which means that the
network is in the transfer state about half of the time.
When the network is in the monitoring state about 99%
of the time, we can already exploit the full benefits of
STEM.

Figure 9 explicitly shows the tradeoff between energy
savings and setup latency, for different values of α. The
solid theoretical curves are obtained from (20) and (6),

Rx

S

T
T

RxT
T=β

173

and we observe again the close correspondence to
simulated values. The energy gains of STEM are
substantial, and can be traded off effectively with setup
latency. For example, in the regime where the network is
in the monitoring state 99% of the time (α = 0.01), a ten-
fold decrease of energy consumption requires only a
setup latency of about 1.3 seconds per hop. Note that we
have used a relatively slow radio with a bit-rate of just
2.4 Kbps. By choosing a radio that is 10 times faster, this
latency would be a mere 130 ms.

Figure 9 – Energy – setup latency tradeoff of STEM

6. COMBINING STEM AND GAF
As mentioned in the introduction, existing topology

management schemes, such as GAF and SPAN,
coordinate the radio sleep and wakeup cycles while
ensuring adequate communication capacity. The
resulting energy savings increase with the network
density. STEM, on the other hand, leverages the setup
latency. Moreover, it can be integrated with schemes as
GAF or SPAN, to achieve additional gains by also
exploiting the density dimension in topology
management. We specifically focus on combining STEM
with GAF.

6.1. Behavior of GAF

In this subsection, we discuss plain GAF, i.e., without
STEM. Furthermore, we also analyze its behavior
theoretically, as this is an essential build ing block in the
analysis of STEM combined with GAF. Such analysis
was not provided in the original GAF paper [6].

The GAF algorithm is based on a division of the
sensor network in a number of virtual grids of size r by r,
see Figure 10. The value of r is chosen such that all
nodes in a grid are equivalent from a routing perspective
[6]. This means that any two nodes in adjacent grids
should be able to communicate with each other. By
investigating the worst-case node locations depicted in
Figure 10, we can calculate that r should satisfy (26) [6].

 (26)

Figure 10 – GAF grid structure

The average number of nodes in a grid, M, is given

by (27). By combining this with (26), we see that M
should satisfy (28). In the remainder of this paper, we
choose (26) and (28) to hold with equality.

 (27)

 (28)

Since all nodes in a grid are equivalent from a routing

perspective, we can use this redundancy to increase the
network lifetime. GAF only keeps one node awake in
each grid, while the other nodes put their radio off. To
balance out the energy consumption, the burden of traffic
forwarding is rotated between nodes. In the theoretical
analysis, we ignore the unavoidable time overlap of this
process associated with handoff. If there are m nodes in a
grid, the node will (ideally) only turn its radio on 1/mth of
the time and therefore will last m times longer.

When distributing nodes over the sensor field, some

grids will not contain any nodes at all. We use θ to
denote the fraction of used grids, i.e., which have at least
one node. As a result, the average number of nodes in the
used grids is equal to M’, given by:

 (29)

The average power consumption of a node using

GAF, GAF
nodeP , is equal to (30). In this equation, Pon is the

r

r

2
2 r

L

NM ⋅=

π
λ
5

≤M

5
Rr ≤

θ
MM =′

Rx

S

T
T

0E
E 5.0=α

1.0=α

01.0=α

001.0=α

174

power consumption of a node if GAF would not be used.
It thus contains contributions of receive, idle and
transmit mode, as the node would never turn its radio off.
With GAF, in each grid only one node at a time has its
radio turned on, so the total power consumption of a
grid, Pgrid , is virtually equal to Pon (neglecting the sleep
power of the nodes that have their radio turned off).
Since M’ nodes share the duties in a grid equally, the
power consumption of a node is 1/M’ that of the grid, as
in (30).

 (30)

The average relative energy for a node is thus given

by:

 (31)

Alternatively, we see that the lifetime of each node in

the grid is increased with the same factor M’. As a result,
the average lifetime of a grid, gridt , i.e., the time that at
least one node in the grid is still alive, is given by (32),
where tnode is the lifetime of a node without GAF. We
can essentially view a grid as being a ‘virtual node’,
composed of M’ actual nodes.

 (32)

Note that GAF

nodeP and gridt , which are averages over

all grids, only depend on M’ and not on the exact
distribution of nodes in the used grids! Of course, the
variance of both the node power and the grid lifetime
depends on the distribution. If we would have full
control over the network deployment, we could make
sure that every used grid has exactly M’ nodes, which
minimizes the power and lifetime variance.

For the special case of a random node distribution,

we now calculate the statistics exactly. The probability
Q(m) of having a grid with m nodes is given by (33). The
derivation is analogous that the one leading to (24).

 (33)

In this case, the fraction θ of used grids is equal to:

 (34)

The probability of having m nodes in a used grid is

given by:

 (35)

We also know that the probability that the power of a

node is equal to 1/mth of that in a grid, is the same as the
probability of a node being in a grid with m nodes:

 (36)

Alternatively, equation (37) gives the probability that

the lifetime of a grid is m times that of an individual
node.

 (37)

We verify from (36) and (37) that the average values

of GAF
nodeP and tgrid are indeed equal to (30) and (32).

6.2. Analysis of STEM combined with GAF

As discussed in the previous subsection, GAF
leverages the network density to conserve energy, while
leaving the data forwarding capacity intact. STEM, on
the other hand, saves energy by trading it off with path
setup latency. We anticipate better results by combining
both approaches, in an effort to exploit both latency and
density dimensions. Fortunately, STEM and GAF are
essentially orthogonal to each other, as we discuss next,
such that the resulting energy gains leverage the full
potential of both techniques.

In GAF, a grid can be viewed as having one virtual

node, and the physical nodes alternatively perform the
functionality of that virtual node. From this perspective,
STEM can be introduced in a straightforward manner by
letting it run on the virtual node. In real life, nodes
alternate between sleep and active states, as governed by
GAF. The one active node in the grid, runs STEM in the
same way as described in section 3. The routing protocol
only needs to be modified to address virtual nodes (or
grids), instead of real nodes.

However, we need to change the mechanism by

which the functionality of being active in a grid is rotated
between nodes, which is referred to as ‘leader election’.
In the original election scheme of GAF [6], nodes that
are asleep decide to become the leader after some time
interval. To resolve the inconsistency of having multiple
leaders, these nodes send periodic broadcasts and listen

M
gridP

M
onPGAF

nodeP
′

=
′

=

Mnodetgridt ′⋅=

Me
m

mMmQ −⋅=
!

)(

Me

Me
m

mM
mQ

mQmmQ
−−

−
⋅=

≥
=≥

1!)1(
)()1(

Me
m

mM
M

mQm
m

gridP
GAF
nodePQ −⋅

−

−
=

⋅
==

)!1(

1)(
)(

MeQ −−=−= 1)0(1θ

)1()(≥=⋅= mmQmnodetgridtQ

MtonP

tGAF
nodeP

E
E

′
=

⋅

⋅
= 1

0

Me

Me
m

mM
−−

−
⋅=
1!

175

0E
E

λ

GAF

STEM + GAF
β = 4
β = 6
β = 8

to similar messages from the other leaders in their grid.
Upon receiving such broadcasts, each leader decides to
go to sleep or remain a leader based on the expected
remaining time to live of both nodes, which is included
in the broadcasts. Note that this procedure requires leader
to have its radio on continuously.

However, if leaders run STEM, as we propose in our

hybrid scheme, they have their data radio turned off and
will not receive the broadcast messages. We therefore
need another election scheme to avoid the persistent
occurrence of multiple leaders is one grid. As a solution,
a node that wants to become the leader, first sets up a
link to the current leader using regular STEM. It does not
need to know the exact node to address, as it can simply
wake up ‘whoever is the current leader’. Once the link is
set up, the necessary information to decide the election
process is exchanged on the data plane. If a node cannot
contact the current leader, it assumes that it died (e.g. due
to physical destruction) and takes over its role.

With this modification, STEM and GAF can be

integrated effectively. As they are orthogonal in our
hybrid scheme, we can directly obtain expression (38)
for the relative energy gain of a node in a grid with m
nodes. This is based on expanding (20), where the
statistics of m are given by (36). The extra term ∆
represents the overhead of the leader election process
(which we ignored previously in our analysis of GAF).

 (38)

From (38), the average relative energy over all nodes

can be derived as being equal to (39), the same way as
was done in section 6.1.

 (39)

For the link setup latency of regular data traffic, the

expressions are exactly the same as the ones for STEM,
given in section 4.1. The reason is that the leader appears
simply as a virtual node that is using STEM, as long as
there is no interference from the leader election process.
As this election process occurs at a timescale that is
much larger than the link setup time, such interference is
negligible.

6.3. Evaluation of STEM combined with GAF

We now verify our hybrid scheme of STEM
combined with GAF through simulations, again with the
settings of Table I and Table II. A node decides to try to
become the leader after a random time in the range of
800 to 1200 seconds. Furthermore, to limit the
dimensionality of the graphs, we have chosen α = 0. This
corresponds to a network that is always in the monitoring
state, but we have verified that the algorithm and
analysis also work fine when there is traffic . All reported
results are averaged over 1000 simulations.

In Figure 11, the relative energy is plotted versus the

network density λ, for GAF and our hybrid scheme of
STEM+GAF. We have simulated this hybrid scheme for
different values of the inverse duty cycle β. For the
theoretical values, we have set ∆ = 0, for reasons we
explain later. Clearly the simulations correspond for the
most part to the theoretical analysis. The discrepancies
are due to ignoring the overheads of the leader election
process.

Figure 11 – Relative energy saving versus density for
GAF and GAF+STEM

For the combination of STEM and GAF, these

discrepancies are larger when λ or β increase because of
two reasons. First, when the absolute energy decreases,
the relative impact of overheads becomes larger. Second,
collisions between leader elections increase the
overhead. Such collisions are more likely when the
network density λ is higher, or when β increases and
leader election takes more time. This effect is hard to
describe analytically. For the settings we used, both the

∆+

⋅+

⋅
++=

P
sleepPTSf

mE
E

node

2
2

11

0

α
β

∆+

⋅+

⋅
++

′
=

P
sleepPTSf

ME
E 2

2
11

0

α
β

176

0E
E

λ

β = 8

β = 6

β = 6
β = 4

β = 8

β = 4

GAF

STEM

STEM + GAF

first and second effect need to be taken into account to
explain the discrepancies observed in Figure 11. As the
collisions are hard to model, we chose to simply set ∆ =
0 in our analysis.

However, in our simulations, a node tries to become a

leader relatively often (about every 1000 seconds). In
more realistic scenarios, the election process is likely to
operate at a much larger timescale, such that overheads
would be negligible in the operating region plotted in
figure 11. Thus, we anticipate even better results in
realistic settings. We chose such frequent leader election,
since otherwise the simulations would take an
impractical amount of time. Although not shown here,
we also verified that the link setup latency is similar to
that of STEM alone.

 Figure 12 compares the performance of STEM,

GAF and our hybrid scheme, based on simulations. All
overheads are therefore taken into account here. First of
all, we observe that the energy savings of GAF are
moderate, except for high network densities. The reason
is that the average number of nodes in a grid is fairly
low, as can be seen from (28)-(29). For example, the
number of nodes in a used grid, M’, is smaller than 2 and
the energy savings are thus less than 50% for densities of
λ ≤ 25. To put this into perspective, λ = 25 corresponds
to a topology where each node has 25 neighbors on
average.

Figure 12 – Comparison of GAF, STEM and
GAF+STEM

STEM, on the other hand, is independent of the
network density. More energy savings are obtained by
allowing an increased link setup latency, the value of
which can be found in Figure 7 for each choice of β.
Even for the low bit rate radio we have chosen, the
energy is reduced by a factor of 4 by allowing about 500
ms of setup latency per hop. A combination of STEM
and GAF leverages both dimensions, resulting in energy
savings of almost two orders of magnitude.

We observed that the absolute value of the overhead

is largest for this hybrid scheme. It nevertheless
continues to outperform STEM or GAF, except for
extremely high setup latencies or extremely high
densities, which are far beyond any practical values. The
combination of STEM and GAF thus performs well at
any reasonable operating point in the latency-density
dimensions, exploiting both of them as much as possible.
Even at low densities or low latencies, the other
dimension can be traded off for energy savings. The
gains are compounded when both dimensions can be
exploited together.

7. CONCLUSIONS
In this paper, we have introduced STEM, a topology

management technique that trades off power savings
versus path setup latency in sensor networks. It emulates
a paging channel by having a separate radio operating at
a lower duty cycle. Upon receiving a wakeup message, it
turns on the primary radio, which takes care of the
regular data transmissions. Our topology management is
specifically geared towards those scenarios where the
network spends most of its time waiting for events to
happen, without forwarding traffic.

We have also proposed a hybrid scheme, which

exploits both setup latency and network density to
improve the energy savings. STEM is integrated with
GAF in an orthogonal fashion, such that the benefits of
both approaches are utilized to their full extend. The
gains are superior to those of any of the two schemes
separately, for all practical operating points. Compared
to a network without topology management, a
combination of STEM and GAF can easily reduce the
energy consumption to 10% or less. Alternatively, this
results in a node lifetime increase of a factor 10 or more.

Increased energy savings can be obtained at the cost

of either deploying more nodes or allowing more setup
latency per hop. These choices are essentially part of a
multi-dimensional design tradeoff, which is impacted by
the specific application, the layout of the network, the
cost of the nodes, the desired network lifetime, and many
other factors.

177

8. ACKNOWLEDGMENTS
This paper is based in part on research funded by the

Office of Naval Research, and the DARPA PAC/C and
SenseIT programs through AFRL contracts #F30602-00-
C-0154 and #F30602-99-1-0529. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of the ONR, DARPA, Air Force Rome
Laboratory, or the U.S. Government.

REFERENCES
[1] K. Sohrabi, J. Gao, V. Ailawadhi, G. Pottie,

“Protocols for self-organization of a wireless sensor
network,” IEEE Personal Communications
Magazine, Vol.7, No.5, pp. 16-27, Oct. 2000.

[2] L. Clare, G. Pottie, J. Agre, “Self-organizing
distributed sensor networks,” SPIE - The
International Society for Optical Engineering ,
Orlando, FL, pp. 229-237, April 1999.

[3] D. Estrin, R. Govindan, “Next century challenges:
scalable coordination in sensor networks,”
MobiCom 1999, Seattle, WA, pp. 263-270, August
1999.

[4] A. Savvides, C.-C. Han, M. Srivastava, “Dynamic
fine-grained localization in ad-hoc networks of
sensors,” MobiCom 2001, Rome, Italy, pp. 166 –
179, July 2001.

[5] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris,
“Span: an energy-efficient coordination algorithm
for topology maintenance in ad hoc wireless
networks,” MobiCom 2001, Rome, Italy, pp. 70-84,
July 2001.

[6] Y. Xu, J. Heidemann, D. Estrin, “Geography-
informed energy conservation for ad hoc routing,”
MobiCom 2001, Rome, Italy, pp. 70-84, July 2001.

[7] J.-H. Chang, L. Tassiulas, “Energy conserving
routing in wireless ad-hoc networks,” INFOCOM
2000 , Tel Aviv, Israel, pp. 22-31,March 2000.

[8] J. Rabaey, J. Ammer, J.L. da Silva, D. Patel,
“PicoRadio: Ad-hoc wireless networking of
ubiquitous low-energy sensor/monitor nodes,”
IEEE Computer Society Workshop on VLSI 2000,
Orlando, FL, pp. 9-12, April 2000.

[9] W. Rabiner Heinzelman, A. Chandrakasan, H.
Balakrishnan, “Energy-efficient communication
protocol for wireless microsensor networks,”
HICSS 2000, Maui, HI, Jan. 2000.

[10] C. Guo, L. Zhong, J. Rabaey, “Low-power
distributed MAC for ad hoc sensor radio networks,”
Globecom’01, San Antonio, TX, Nov 2001.

[11] Sensoria Corporation, http://www.sensoria.com/.

[12] R. Bagrodia, R. Meyer, M. Takai, Y.A. Chan, X.
Zeng, J. Marting, H.Y. Song, “Parsec: a parallel
simulation environment for complex systems,”
Computer, Vol.31, No.10, pp. 77-85, October 1998.

[13] M. Yacoub, Foundations of Mobile Radio
Engineering, CRC Press, 1993.

[14] M. McGlynn, S. Borbash , “Birthday protocols for
low energy deployment and flexible neighbor
discovery in ad hoc wireless networks”, MobiHoc
2001 , pp. 137-145, October 2001.

[15] “ASH Transceiver Designer’s Guide,”
http://www.rfm.com.

Curt Schurgers received the Purple
Heart for his heroics during the great
famine of 1978. In subsequent years, he
used his fame to gather a fortune as a
free-lance lecturer, focusing on the
controversial interaction between hunger
and a lack of food. His career was cut

short when he was falsely accused in the O.J. Simpson
murder trial, resulting in 12 years solitary confinement
at the Placido Domingo Correctional Facility. He was
released after a triple lung transplant, and consequently
given the title of Admiral in the Swiss Navy.
In the 90’s, Admiral Schurgers supervised Al Gore while
inventing the Internet, and became one of the most
influential African-American advisors in the Clinton
administration. After his unsuccessful run for president
of the United States, Curt Schurgers received the Betty
Crocker Scientist Award for his work on trans-
dimensional time warps. Admiral Schurgers is currently
reading your mind.

Vlasios Tsiatsis received his combat
training as preparation for his lunar
landing mission in 1985. General
Tsiatsis is the founder of Malaca Inc, a
multinational that produces fire
resistant diapers for the LA orchestra.
After serving 5 years in state prison for

triple involuntary carjacking in 1986, he became the first
black pope. Currently, Prime Minister Tsiatsis plays
starting right outfielder for the NY Yankees. His research
interests include women, girls, ladies, babes, chicks, and
blue pencil sharpeners.

178

Saurabh Ganeriwal recorded his first
solo album while ritually burning his
feet. Dr. Ganeriwal’s mother died as an
infant. His father was the inventor of the
square wheel and (not surprisingly)
never quite made it out of the
sanatorium. The current whereabouts of
Dr. Ganeriwal are unknown. If you see

him, do not try to arrest him yourself. He is to be
considered extremely dangerous.

Mani Srivastava is an Associate
Professor of Electrical Engineering at
UCLA. He received his B.Tech. in EE
from IIT Kanpur in India and M.S. and
Ph.D. from Berkeley. From 1992
through 1996 he was a Member of
Technical Staff at Bell Laboratories in

Networked Computing Research. His current research
interests are in mobile and wireless networked computing
systems, low power systems, and sensor networks. He
received the NSF CAREER award in 1997, and the
President of India Gold Medal in 1985.

179

Sasha Slijepcevic,
Miodrag Potkonjak

Computer Science Department, UCLA
{sascha,miodrag}@cs.ucla.edu

Vlasios Tsiatsis, Scott Zimbeck,
Mani B. Srivastava

Electrical Engineering Department, UCLA
{tsiatsis, szimbeck, mbs}@ee.ucla.edu

Abstract

Networks of wireless microsensors for monitoring
physical environments have emerged as an important new
application area for wireless technology. Key attributes of
these new types of networked systems are the severely
constrained computational and energy resources, and an
ad hoc operational environment. This paper is a study of
the communication security aspects of these networks.
Resource limitations and specific architecture of sensor
networks call for customized security mechanisms. Our
approach is to classify the types of data existing in sensor
networks, and identify possible communication security
threats according to that classification. We propose a
communication security scheme where for each type of
data we define a corresponding security mechanism. By
employing this multitiered security architecture where
each mechanism has different resource requirements, we
allow for efficient resource management, which is
essential for wireless sensor networks.

Keywords—wireless, sensor, networks, communication

1. Introduction

Wireless sensor networks, applied to monitoring
physical environments, have recently emerged as an
important application resulting from the fusion of wireless
communications and embedded computing technologies
[1][3][13][18][19].

Sensor networks consist of hundred or thousands of
sensor nodes, low power devices equipped with one or
more sensors. Besides sensors, a sensor node typically
contains signal processing circuits, microcontrollers, and a
wireless transmitter/receiver. By feeding information
about the physical world into the existing information
infrastructure, these networks are expected to lead to a
future where computing is closely coupled with the
physical world and is even used to affect the physical
world via actuators. Potential applications include

monitoring remote or inhospitable locations, target
tracking in battlefields, disaster relief networks, early fire
detection in forests, and environmental monitoring.

While recent research has focused on energy efficiency
[14], network protocols [6], and distributed databases,
there is much less attention given to security. The only
work that we are aware of is [11]. However, in many
applications the security aspects are as important as
performance and low energy consumption. Besides the
battlefield applications, security is critical in premise
security and surveillance, and in sensors in critical systems
such as airports, hospitals, etc. Sensor networks have
distinctive features, the most important ones being
constrained energy and computational resources. To
accommodate those differences existing security
mechanisms must be adapted or new ones created.

The main contributions of our work are:
• An assessment of communication security threats

in sensor networks.
• Separate security mechanisms for data with

various sensitivity levels. Such separation allows
efficient resource management that is essential for
wireless sensor networks.

• A location-based scheme that protects the rest of a
network, even when parts of the network are
compromised.

Our approach to communication security in sensor
networks is based on a principle stated in [12], that says
that data items must be protected to a degree consistent
with their value. In the particular architecture [4], for
which we are developing our communication security
scheme, we differentiate between three types of data sent
through the network:
1. Mobile code
2. Locations of sensor nodes
3. Application specific data

Following this categorization, we specify the main
security threats and the appropriate security mechanisms:

On Communication Security in Wireless Ad-Hoc Sensor Networks

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

180

goodelle
Text Box
Appendix K:

goodelle
Oval

goodelle
Oval

goodelle
Oval

• Fabricated and malicious mobile code injected into
a network can change the behavior of the network
in unpredictable ways.

• Acquiring locations of sensor nodes may help an
adversary to discover locations of sensor nodes
easier than using radio location techniques.

• Protection of application specific data depends on
the security requirements of a particular
application. In a target tracking application, which
was a test case for the given security scheme, we
treated the application specific data as the least
sensitive type of data.

Our main goal is to minimize security related energy
consumption. By offering a range of security levels we
ensure that the scarce resources of sensor nodes are used
accordingly to required protection levels. There are many
other important issues for security in sensor networks, e.g.
physical protection of the sensitive data in sensor nodes,
and the system-level security. However, those topics are
outside of the scope of this paper. The complexity of
building tamper-proof circuits that could protect sensitive
information held in a node is described in [2].

In Section 2, we describe the SensorWare network
architecture for which the communication security scheme
is developed. Section 3 categorizes possible threats to a
sensor network. In Section 4, we propose the
communication security mechanisms corresponding to the
defined types of data. Section 5 describes the
implementation environment. Section 6 discusses related
work, while Section 7 concludes the paper.

2. Sensor Network Architecture

In this section, we briefly describe the SensorWare
network architecture based on the research at UCLA and
Rockwell Science Center [16]. We point out the aspects of
the architecture that impact the design of the security
scheme. The most important elements of the architecture
are: localized algorithms, local broadcast model of
communication, and mobile code.

2.1. Localized Algorithms

The most distinctive feature of sensor networks is the
limited energy available to sensor nodes. Consequently,
careful budgeting of the available energy becomes a
fundamental design principle. Keeping in mind that
communication between nodes consumes a significant
amount of the energy resources, applications and system
software are expected to achieve a required level of
performance while minimizing the amount of traffic in the
network. In the SensorWare architecture, the applications
are designed based on localized algorithms, where nodes

triggered by an event exchange messages within an
immediate neighborhood. Only one node aggregates all
the sensor readings and sends the combined data to a
gateway node, which is one of the sensor nodes in a
network capable of serving as a proxy between the
network and the user.

2.2. Local broadcast

In sensor networks, local broadcast is a fundamental
communication primitive. Local broadcast is necessary to
build and maintain sensor networks architectures, and to
support the exchange of the data about detected events.
Any node in the network can be a sender or a receiver of a
broadcast message. These properties of sensor networks
have a significant impact on the security. In our security
scheme, we use shared symmetric keys for encryption.
Such a solution simplifies the key management and retains
the energy efficiency of local broadcast, but does not offer
strong authentication.

2.3. Code Mobility

The code mobility paradigm is essential in sensor
networks for two reasons:

1. Limited storage available to nodes does not allow
keeping all application on a node at all times.

2. Applications that a network should run may not be
known at the time of deployment of the network.

Since manual reconfiguration of sensor nodes after
deployment is not feasible, the support for mobile code is
additionally important.

3. Security Threats

Wireless networks, in general, are more vulnerable to
security attacks than wired networks, due to the broadcast
nature of the transmission medium. Furthermore, wireless
sensor networks have an additional vulnerability because
nodes are often placed in a hostile or dangerous
environment where they are not physically protected.

To demonstrate, on an example, some of the security
threats and our corresponding protection mechanisms, we
simulated and implemented a target tracking application.
The nodes that detect a target in an area exchange
messages containing a timestamp, the location of the
sending node and other application-specific information.
When one of the nodes acquires a certain number of
messages such that the location of the target can be
approximately determined, the node sends the location of
the target to the user.

Not only the application messages are exchanged
through the network, but also mobile code is sent from

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE 181

goodelle
Oval

goodelle
Oval

node to node. Because the security of mobile code greatly
affects the security of the network, we consider protection
of the messages containing mobile code as an important
part of our communication security scheme.

For the types of data specified in Section 1, we list the
possible threats to a network if communication security is
compromised:

1. Insertion of malicious code is the most dangerous
attack that can occur. Malicious code injected in the
network could spread to all nodes, potentially destroying
the whole network, or even worse, taking over the network
on behalf of an adversary. A seized sensor network can
either send false observations about the environment to a
legitimate user or send observations about the monitored
area to a malicious user.

2. Interception of the messages containing the physical
locations of sensor nodes allows an attacker to locate the
nodes and destroy them. The significance of hiding the
location information from an attacker lies in the fact that
the sensor nodes have small dimensions and their location
cannot be trivially traced. Thus, it is important to hide the
locations of the nodes. In the case of static nodes, the
location information does not age and must be protected
through the lifetime of the network.

3. Besides the locations of sensor nodes, an adversary
can observe the application specific content of messages
including message IDs, timestamps and other fields.
Confidentiality of those fields in our example application
is less important then confidentiality of location
information, because the application specific data does not
contain sensitive information, and the lifetime of such data
is significantly shorter.

4. An adversary can inject false messages that give
incorrect information about the environment to the user.
Such messages also consume the scarce energy resources
of the nodes. This type of attack is called sleep
deprivation torture in [17].

4. Communication Security Scheme

After we defined the three types of data in the
SensorWare network, and the possible threats to the
network, in this section we define the elements of the
security scheme. The three security levels described here
are based on private key cryptography utilizing group
keys. Applications and system software access the security
API as a part of the middleware defined by the
SensorWare architecture. Since all three types of data
contain more or less confidential information, the content
of all messages in the network is encrypted.

We assume that all sensor nodes in the network are
allowed to access the content of any message. As we said
before, we only deal with communication security.
Protection of data within a node is not discussed here.

The deployment of security mechanisms in a sensor
network creates additional overhead. Not only does
latency increases due to the execution of the security
related procedures, but also the consumed energy directly
decreases the lifetime of the network. To minimize the
security related costs we propose that the security
overhead, and consequently the energy consumption,
should correspond to sensitivity of the encrypted
information. Following the taxonomy of the types of data
in the network, we define three security levels:

• Security level I is reserved for mobile code, the
most sensitive information sent through the
network,

• Security level II is dedicated to the location
information conveyed in messages,

• The security level III mechanism is applied to the
application specific information.

The strength of the encryption for each of security
levels corresponds to the sensitivity of the encrypted
information. Therefore, the encryption applied at level I is
stronger than the encryption applied at level II, while the
encryption on level II is stronger than the one applied at
level III.

Different security levels are implemented either by
using various algorithms or by using the same algorithm
with adjustable parameters that change its strength and
corresponding computational overhead. Using one
algorithm with adjustable parameters has the advantage of
occupying less memory space.

We selected RC6 [15]. RC6 is suitable for modification
of its security strength because it has an adjustable
parameter (number of rounds) that directly affects its
strength. The overhead for the RC6 encryption algorithm
increases with the strength of the encryption measured by
the number of rounds [10]. Our implementation results
presented in Section 5 also demonstrate that property.

The multicast model of communication inherent for the
SensorWare architecture suggests deployment of group
keys. Otherwise, if each pair of nodes would require a key
or a pair of keys, communication between the nodes
would have to be unicast based. This would significantly
increase the number of messages. Since the addition of
security in a sensor network must not require the change
of the whole sensor network architecture, group keys are
utilized.

All nodes in the network share an initial set of master
keys. The number of the keys depends on the estimated
lifetime of the network. The longer the lifetime, the more
keys are needed in order to expose less material for a
“known ciphertext” attack. The alternative approach
where the keys would be established dynamically and
propagated through the network is not acceptable. It
would require such a protocol that guarantees that all
nodes received a key. Such a requirement is not feasible in

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE 182

goodelle
Oval

goodelle
Oval

a network where the nodes do not keep track of their
neighbors.

One of the keys from the list of master keys is active at
any moment. The algorithm for the selection of a
particular key is based on a pseudorandom generator
running at each node with the same seed. Periodically and
synchronously on each node, a new random number is
generated and used to provide and index to an entry in the
table of the available master keys. This entry contains the
active master key. The keys for three levels of security
corresponding to the three types of data are then derived
from the active master key.

4.1. Security Level I

The messages that contain mobile code are less frequent
than the messages that the application instances on
different nodes exchange. It allows us to use a strong
encryption in spite of the resulting overhead. For
information protected at this security level, nodes use the
current master key. The set of master keys, the
corresponding pseudorandom number generator, and a
seed are credentials that a potential user must have in
order to access the network. Once when the user obtains
those credentials, she can insert any code into the network.
If a malicious user breaks the encryption on this level
using a “brute force” attack, she can insert harmful code
into the network.

4.2. Security Level II

For data that contains locations of sensor nodes, we
provide a novel security mechanism that isolates parts of
the network, so that breach of security in one part of the
network does not affect the rest of the network.

According to our assumptions about the applications
expected to run in sensor networks, the locations of sensor
nodes are likely to be included in the majority of
messages. Thus, the overhead that corresponds to the
encryption of the location information significantly
influences the overall security overhead in the network.
This must be taken into account when the strength of the
encryption at this level is determined. Since the protection
level is lower for the location information than for mobile
code, the probability that the key for the level II can be
broken is higher. Having the key, an adversary could
potentially locate all nodes in the network. To constrain
the damage to only one part of the network, we propose
the following security mechanism. Sensor nodes use
location-based keys for level II encryption. The
location-based keys enable separation between the regions
where the location of nodes are compromised and the
areas where nodes continue to operate safely.

The area covered by a sensor network is divided into
cells. Nodes within one cell share a common
location-based key, which is a function of a fixed location
in the cell and the current master key. Between the cells,
there is a bordering region whose width is equal to the
transmission range. Nodes belonging to those regions
have the keys for all adjacent cells. This ensures that two
nodes within a transmission range from each other have a
common key. The dimensions of the cells must be big
enough so that the localized nature of the algorithms in the
network ensures that the traffic among the cells is
relatively low, compared to overall traffic. The areas can
be of an arbitrary shape with the only requirement that the
whole sensor terrain is covered. A division of the area in
uniformly sized cells is the most appropriate solution,
because it allows a fast and easy way for a node to
determine its cell membership. We divide the network into
hexagonal cells, since it ensures that the gateway nodes
have at most three keys.

A part of the bootstrapping mechanism for sensor nodes
is the process of determining their cell membership. In
that process, we use the notion of extended cell. An
extended cell is a hexagonal cell, which has the same
center as the original cell and the distance between its
sides and the sides of the original cell is equal to the
transmission range of the sensor nodes. The extended cell
contains the original cell and corresponding bordering
regions. Fig. 1 shows three neighboring cells and their
corresponding extended cells. Each node compares its
location against each extended cell and determines if it is
in an extended cell or not. If a node is within the extended
cell of Cx, it will have the key of Cx, KCx. The nodes
within the bordering regions (shaded areas) have multiple
keys as shown. For example, the nodes that are adjacent to
cells C1 and C2 have two keys: KC1 and KC2, respectively.

KC1, KC2

Figure 1. Cells, Extended cells and areas
with multiple keys

C1

C2

C3

KC2, KC3

KC1, KC3

KC1, KC2,
KC3

Cell

Extended cell

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE 183

goodelle
Oval

goodelle
Oval

4.3. Security Level III

We encrypt the application specific data using a weaker
encryption than the one used for the two aforementioned
types of data. The weaker encryption requires lower
computational overhead for application specific data.
Additionally, the high frequency of messages with
application specific data prevents using stronger and
resource consuming encryption. Therefore, we apply an
encryption algorithm that demands less computational
resources with a corresponding decrease in the strength of
security.

The key used for the encryption of the level III
information is derived from the current master key. The
MD5 hash function accepts the master key and generates a
key for level III. Since the master key is periodically
changed, the corresponding key at this level follows those
changes.

In the discussion above the major assumptions of the all
the proposed security schemes is that the sensor nodes are
perfectly time synchronized and have exact knowledge of
their location. It is not unrealistic [5] that the nodes can be
synchronized up to µs.

5. Implementation

As a part of a proof of concept implementation, we
ported the encryption routines of RC6 on the Rockwell
WINS sensor nodes. Each operates with an Intel
StrongARM 1100 processor running at 133 MHz, 128KB
SRAM, 1MB Flash Memory, a Conexant DCT RDSSS9M
radio, a Mark IV geophone and RS232 external interface.
The radios transmit at 100Kbps with the transmission
power of 1mW, 10mW, or 100mW. Using the ARM
System Developers Kit profiling tools, we measured the
clock cycles spend for encryption and decryption of a
single 128 bit block with a key of length 128, versus the
number of algorithmic rounds. In the AES candidate
report [10] the number of rounds, determines the security
strength of an algorithm. In this report for each algorithm
a minimum number of rounds for which the algorithm is
considered to be secure (Rmin) is presented.

Based on this quantity, the security margin of an
encryption algorithm is defined as the percentage of
deviation of the actual number of rounds from Rmin:

min

min

R

RR
M s

−
= .

Fig. 2 depicts the total clock cycles for encryption and
decryption of a single 128-bit block with a 128-bit key
versus the number of rounds.

As the figure shows, there is a linear relationship
between the clock cycles and the number of rounds. As

also shown from the equation above, increasing the
number of rounds, increases the security margin but the
overhead for each block is also increased.

The specification of the Rockwell WINS node can be
found in [9] and [20]. The maximum energy saving is
achieved when the radio transmission power is set to
1mW. To send a block of 128 bits, the radio consumes
1.28 µJ. The processor consumes 3.9 µJ to encrypt the
block using 32 rounds, which corresponds to security level
I. The energy consumed when the same block is encrypted
using 22 rounds, which corresponds to level III, is 2.7 µJ.
Therefore, if a message contains the data that is encrypted
on security level III the energy consumption decreases by
23% compared to a scheme where all data is encrypted on
level I. For the transmission power of 10mW, the
maximum savings are only 2%. It is important to mention
that the messages containing the location and the
application specific data are likely to occur much more
frequently than the messages containing mobile code, for
which the consumed energy is the same for the multitiered
scheme and the scheme with only one encryption level.

6. Related Work

The issue of security in wireless sensor networks has
not attracted much attention. The only work in that area
known to us is [11]. The sensor network architecture
discussed there significantly differs from the SensorWare.
In [11], the sensor network relies on the existing
infrastructure of the energy unconstrained base stations
that communicate with the resource constrained nodes.
The security protocol µTESLA, built for such an
environment, mainly supports the authenticated broadcast

Figure 2. Encryption and decryption clock
cycles versus the number of rounds for RC6

1000

1100

1200

1300

1400

1500

1600

1700

1800

20 22 24 26 28 30 32

number of rounds

C
lo

ck
cy

cl
es

encrypt

decrypt

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE 184

goodelle
Oval

goodelle
Oval

goodelle
Oval

from a base station to surrounding nodes. Even if a node
has to send a broadcast message, it must rely on support
from a base station. The protocol ensures authentication of
broadcast messages by distributing a key after the
messages encrypted with that key. Base stations are part of
a trusted computing base, and it is assumed that they
cannot be compromised. In our architecture all nodes can
be senders and receivers of broadcast messages. In order
to achieve a strong authentication offered by µTESLA in
our architecture, each node would have to have its own
key known to all other nodes in the network. In a network
with possibly thousands of nodes, such a solution does not
scale well.

In secure multicast for wired and mobile networks
[7][8] the main problem is key management, i.e. the re-
keying overhead when users join and leave the group. In
sensor networks the problem is different, since the sensor
nodes do not leave the group, and newly deployed nodes
are not forbidden to access the messages generated before
their deployment. The goal in sensor networks is to keep
external adversaries out of the group in an energy and
computationally efficient way. However, the approach of
dividing a group into subgroups and having gateways for
the inter-subgroup communication, used in secure
multicast, is similar to our approach of the division of the
sensor terrain in location based key areas.

7. Conclusion

In this paper, we propose a communication security
scheme for sensor networks. The straightforward approach
to the secure communication in sensor networks could be
the application of a single security mechanism for all data
in the network. However, if the mechanism is chosen
according to the most sensitive data in the network,
security related resource consumption might be
unacceptable. On the other hand, a less consuming
mechanism could allow for serious security threats.
Therefore, the solution lies in the identification of
appropriate security requirements for various types of data
and the application of suitable security mechanisms. Using
the target tracking application as an example, and the
SensorWare architecture as a target platform, we define
here some security challenges in sensor networks, identify
different types of data, and propose and implement
elements of a communication security scheme.

Secure communication, which is the topic of this paper,
is only one of the security issues in sensor networks. An
important security concern in the SensorWare architecture
is the deployment of mobile code. Besides sensor

networks, there are other systems, where flexibility is
required, but the security of a system must not be
jeopardized (Java Virtual Machines in Web browsers is
one of the well known examples).

References

[1] H. Abelson et. al., “Amorphous Computing”, Communication
of ACM, vol.43, vol. 5, May 2000, pp. 74-82.

[2] R. Anderson, M. Kuhn, “Tamper resistance—a Cautionary
Note”, In Proceedings of the Second USENIX Workshop on
Electronic Commerce, 1996.

[3] G. Borriello, R. Want, “Embedding the Internet: Embedded
Computation Meets the World Wide Web”, Communication of
ACM, vol.43, no.5, May 2000, pp. 59-66.

[4] DARPA SensIT program. http://dtsn.darpa.mil/ixo/sensit.asp
[5] J. Elson, D. Estrin, “Time Synchronization for Wireless Sensor

Networks”, In Proceedings of the 2001 IPDPS, Workshop on
Parallel and Distributed Computing Issues in Wireless Networks
and Mobile Computing, San Francisco, CA, April 2001.

[6] D. Estrin, R. Govindan, J. Heidemann, “Embedding the
Internet: Introduction”, Communications of the ACM, vol.43,
no.5, May 2000, pp. 38-41.

[7] L. Gong, N. Shacham, “Multicast Security and its Extension to
a Mobile Environment”, Wireless Networks, vol.1, (no.3), 1995,
pp. 281-295.

[8] P. Kruus, J. Macker, “Techniques and Issues in Multicast
Security”, MILCOM 98, vol.3, Boston, MA, USA, 1998, pp.
1028-32.

[9] J. Agre, L. Clare, G. Pottie, N. Romanov, “Development
Platform for Self-Organizing Wireless Sensor Networks”,
Proceedings of SPIE AeroSense'99 Conference on Digital Wireless
Communication, Orlando, FL, USA, April 1999.

[10] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, E.
Roback, “Status Report on the First Round of the Development of
the Advanced Encryption Standard”,
http://csrc.nist.gov/encryption/aes/round1/r1report.htm.

[11] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar,
“SPINS: Security Protocols for Sensor Networks”, MOBICOM
2001, Rome, Italy, June 2001.

[12] C. P. Pfleeger, “Security in Computing”, Second Edition,
Prentice Hall, 1997.

[13] G. J. Pottie, W. J. Kaiser, “Embedding the Internet: Wireless
Integrated Network Sensors”, Communications of ACM, vol.43,
no.5, May 2000, pp.51-58.

[14] J. Rabaey, J. Ammer, J. L. da Silva, D. Patel, “PicoRadio: Ad-
hoc Wireless Networking of Ubiquitous Low-Energy
Sensor/Monitor Nodes”, Workshop on VLSI, April 2000.

[15] R. L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin, “The
RC6 Block Cipher”, AES submission, Jun 1998.
http://theory.lcs.mit.edu/~rivest/rc6.pdf.

[16] SensorWare Architecture
http://www.rsc.rockwell.com/wireless_systems/sensorware/

[17] F. Stajano, R. Anderson, “The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks”, 3rd AT&T
Software Symposium, Middletown, NJ, October 1999.

[18] G. S. Sukhatme, M. J. Mataric, “Embedding the Internet:
Embedding Robots into the Internet”, Communication of ACM,
vol.43, vol.5, May 2000, pp.67-73.

[19] D. Tennenhouse, “Embedding the Internet: Proactive
Computing”, Comm. of ACM vol.43, no.5, May 2000, pp. 43-50.

[20] V. Raghunathan, C. Schurgers, S. Park, M. B. Srivastava,
“Energy-aware wireless microsensor networks”, IEEE Signal
Processing Magazine, vol.19, (no.2), IEEE, March 2002. pp.
40-50.

The research described in this paper was founded in part by
DARPA’s SensIT program under AFRL Contract F30602-99-1-0529.
The views expressed in this paper are those of the authors, and do not
necessarily represent those of DARPA or AFRL.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE 185

goodelle
Oval

goodelle
Oval

186

goodelle
Oval

goodelle
Oval

goodelle
Text Box
Appendix L:

187

goodelle
Oval

188

goodelle
Oval

189

goodelle
Oval

190

goodelle
Oval

191

goodelle
Oval

A Framework for Efficient and Programmable Sensor Networks

Athanassios Boulis and Mani B. Srivastava

Networked and Embedded Systems Lab, EE Department, University of California at Los Angeles
email: { boulis, mbs } @ee.ucla.edu

Abstract – Ad hoc wireless networks of deeply
embedded devices such as micro-sensors and micro-
actuators have emerged as one of the key growth areas
for wireless networking and computing technologies. So
far these networks/systems have been designed with
static and custom architectures for specific tasks, thus
providing inflexible operation and interaction
capabilities. Var ious architectures are cur rently trying
to make sensor networks programmable and open to
transient users. M ost of these schemes though, promote
algor ithms that are too centralized and/or too
interactive (i.e. the user is involved in the control loop
most of the time), losing the efficiency these highly
resource-limited systems need. Our approach employs
active networking concepts in the form of lightweight
and mobile control scr ipts that allow the computation,
communication, and sensing resources at the sensor
nodes to be efficiently harnessed in an application-
specific fashion. The replication/migration of such
scr ipts in several sensor nodes allows the dynamic
deployment of distr ibuted algor ithms into the network.
Although these mobile control scr ipts have similar ities
to mobile agents for traditional data networks, a
framework to suppor t them has different
considerations than its traditional data network
counterpar t. The paper discusses these considerations
and design choices, and descr ibes SensorWare, our
implementation of such a framework.1

I. INTRODUCTION

In recent years we have witnessed an enormous
growth in wireless networking with applications to
traditional mobile computing and communication
tasks. However, it is widely projected [16][32][39]
that one of the highest growth applications of the
wireless technology will be in the networking of
deeply embedded devices such as sensors and
actuators used for interacting with the physical world.
In the not too distant future one will have an ultra-
low power system-on-a-chip that integrates radio
communication, digital computing, and MEMS
sensing and actuation components on a single die.
Large networks of such wireless devices may be used
for applications such as premise security and

1 This work was partially supported by DARPA SensIT program
and ONR Minuteman project.

surveillance, environmental habitat monitoring,
condition-based maintenance, etc.

Figure 1 shows an example of a distributed
wireless sensor network where an ad hoc network of
miniature, resource-limited, static, wireless, sensor
nodes is being used to monitor a dynamic physical
environment. The use of low power communication
and the need for diversity in sensing necessitates a
multi-hop, distributed architecture [32]. The
computation capabilities at the nodes can be
leveraged for event detection via data fusion and
collaborative signal processing among nearby nodes,
so that higher bandwidth raw sensor data does not
need to be sent to the users. Typically a user queries
the network (consider the term “query” in the broad
sense, not just database query), the query triggers
some reaction from the network, and as the result of
this reaction the user receives the information needed.
The reaction to the query can vary from a simple
return of a sensor value, to a complex unfolding of a
distributed algorithm that promotes collaborative
processing among some sensor nodes.

Figure 1: Distr ibuted sensor network

These systems are also quite different from
traditional networks. First, they have severe energy,
computation, storage, and bandwidth constraints.
Second, their overall usage scenario and the
implications that this brings to the traffic and the

Event

Event

Collaborative
processing among

sensor nodes

Gateway to
the Internet

Useful
information

Static
sensor node

Transient
mobile user

User query

192

goodelle
Text Box
Appendix M:

interaction with the users is quite different from
traditional networks. These differences are discussed
more extensively in section II.

Essentially Sensor Networks (SNs) are
application-specific distributed systems that require a
different distributed algorithm as an efficient solution
to each different application problem. Given the
nature of SNs, there are two classes of problems in
their design. First, the application-specific problem:
How does one find the most efficient distributed
algorithm for a particular problem? Second, the
generic problem: How does one dynamically deploy
different algorithms into the network, what is the
programming model that will implement these
algorithms, and what general support does one need
from the framework?

For the first class of problems (i.e., finding
efficient algorithms for particular applications), there
are many research efforts in a variety of application
problems (e.g., target tracking, sensor reading
aggregation). In this paper we will not expand into
any particular application problem. We only note,
that in general, localized distributed algorithms (i.e.,
distributed algorithms that act locally, using only
local information) are particularly efficient in most
SN problems as they achieve small and well-
distributed energy consumption, thus prolonging the
network lifetime.

The second class of problems (i.e., what is the
right framework to express and dynamically deploy
distributed algorithms for SN) is the focus in this
paper. We describe our proposal of such a
framework, called SensorWare. SensorWare provides
a language model powerful enough to express the
most efficient distributed algorithms while at the
same time hiding unnecessary low-level details from
the application programmer and providing a way to
share the resources of a node among applications.
The language model is developed after examining
what are the properties of efficient algorithms for SN
(e.g., localized distributed algorithms), and in
conjunction with developing our own applications on
real sensor networks [3].

Equally important is the role of SensorWare in the
dynamic deployment of the distributed algorithms
into the network. As sensor nodes are memory-
constrained, they cannot store every possible
application in their local memory. Thus, a way of
dynamically deploying a new application is needed.
Usually this means that a distributed algorithm has to
be incorporated in several sensor nodes, which in turn

means that these sensor nodes have to be dynamically
programmed. A user-friendly and energy-efficient
way of programming the nodes keeps the user out-of-
the-loop most of the time by allowing sensor nodes to
program their peers. By doing so, the user does not
have to worry about the specifics of the distributed
algorithm (because the information on how the
algorithm unfolds lies within the algorithm), and the
nodes save communication energy (because they
interact with their immediate neighbors and not with
the user node through multi-hop routes). The
programming model of SensorWare is designed in
such a way, so as to facilitate the user-friendly and
energy-efficient dynamic deployment of an
algorithm. The user "injects" the query/program into
the network, and the query autonomously unfolds the
distributed algorithm into the nodes that should be
affected. The process resembles the operation of
multiple collaborating mobile agents,
replicating/migrating to the nodes where the
distributed algorithm should be executed.

Although the resemblance with mobile agents
(MA) is strong, a platform to support this kind of
behavior for SN does not have the same
considerations as a platform for traditional-network
mobile agents. We examine these differences in
section III. It is also interesting to note that if one sets
aside these differences and views SensorWare as
another MA system which just operates in a different
realm (i.e., the SN realm), some of MA’s general
problems are considered solved. Kotz in [24] lists the
lack of killer applications, security, performance and
scalability as the most commonly pointed problems
of agent technology. In SNs, most of the interesting
and complex applications (e.g., target tracking)
become the killer application for agent technology,
exactly because they offer improved performance and
scalability over other solutions. In order to achieve
this, the MA paradigm should be disassociated from
the notion of a single agent migrating from node to
node while performing a given task, and associated
with multiple simple light-weight agents that tightly
collaborate to implement a distributed algorithm,
while their behavior and position is influenced by
physical events as well as the user needs.

Section II discusses in depth the nature of SNs, the
problems of traditional static SN designs, and the
general idea of our approach. Section III presents
SensorWare's architecture, and discusses design
choices. Section IV presents related work. Finally,
section V concludes the paper.

193

II. MOTIVATION AND BACKGROUND

A. Diferrences of SNs with traditional data networks

The first difference of sensor networks compared
to traditional data networks is that they have severe
energy, computation, storage, and bandwidth
constraints. For example, the wireless sensor node
currently used in our implementation efforts [35] has
a 133 MHz, 32-bit, Intel StrongARM 1100 CPU, 1
MB of FLASH memory, 1 MB of RAM, a 100 kbps
radio, and has to operate on two 9V batteries. This is
considered to be towards the high end of sensor
network devices. A popular, low-end node design
from UC Berkeley [21] called “mote” uses a 4MHz
8-bit Atmel CPU with 8KB of FLASH memory, only
512B of RAM, and a 10Kbps RFM radio. The major
resource problem in such networks is energy, since
these are static unattended networks, and the nodes
cannot have renewable energy sources. Energy is so
important that algorithms designed for sensor
networks often sacrifice response latency, accuracy,
and other user-desired qualities to save energy and
prolong the operational lifetime of the network. Even
with advances in battery life, energy will remain a
scarce resource in the future and must be conserved
and protected by the SN.

The second difference of sensor networks
compared to traditional data networks is their overall
usage scenario and the implications that this brings to
the traffic and the interaction with the users.
Typically, in traditional networks, users are
connected to a node (or group of nodes) and require
a service from another node. This two-entity
communication model describes the overwhelming
majority of traditional network traffic. The network
acts as a medium bringing the two parties together.
The interaction model is also straightforward; the
user interacts directly with the user or the service at
the other end. Certain actions from the user will
produce certain data transfers to and from the other
end. The most popular exceptions to these rules are
free roaming mobile agents providing either data
mining or broker services. However, this is a small
portion of today's data networks. Sensor networks on
the other hand, are less networks (i.e., in the sense
that they loosely connect independent entities) and
more distr ibuted systems. As stated earlier, the
nodes tightly collaborate to produce information–rich
results. The user will rarely be interested in the
readings of one or two specific nodes. The user will
be interested in some parameters of a dynamic
physical process. To efficiently achieve this, the

nodes have to form an application-specific distributed
system to provide the user with the answer. This is a
departure from the two-entity model: There is not a
clear second group of nodes. There are only the users
and the whole network. The nodes that are involved
in the process of providing the user with information
are constantly changing as the physical phenomenon
is changing.

The last remark brings us to the user-interaction
topic. Apart from the user input, the physical
phenomena now play a central role in the actions
inside the network. The actions in each individual
node are affected from external physical stimuli,
information from other nodes, as well as direct input
from the user. Actually, it is desirable to operate in a
fashion where a node's actions are affected largely by
physical stimuli detected by the node itself or nearby
nodes. Frequent long trips to the user are undesirable
because they are time and energy consuming. This
decentralized (i.e. not all traffic flows to/from user),
autonomous (i.e., user out-of-the-loop most of the
time) way of operating, is called “proactive
computing” (as opposed to interactive) by David
Tennenhouse [39]. We also adopt the term
“proactive” throughout the paper to denote an
autonomous and non-interactive nature. In order for
sensor networks to realize their full potential and
efficiently use their limited resources, they have to be
viewed as distributed proactive systems.

B. Problems of traditionally designed SNs

The computation and communication tasks to be
defined in such a distributed and proactive system are
very application-specific so that the system design
and implementation do not lead to easy layering and
abstraction of lower level details. Basically, a
different distributed algorithm is needed, to provide
the optimal solution for each different task. This
characteristic has led to systems designed with static
and custom architectures for specific tasks (e.g.,
[21]). It is not possible for a transient external user,
even if he were to be able to interface with the
network, to dynamically utilize the system resources
in any other fashion than what is hardwired into the
custom application. These are systems that are
essentially closed to external users and systems that
wish to interface with them in a way other than the
pre-programmed one. The inflexible modes of
operation and interaction are a hindrance when one
considers that these systems usually have long
deployment cycles and often face transient users with
varying needs. Ideally one would want to view the

194

sensor network as an entity that provides services to
transient users with different dynamic needs.

The notion of bringing programmability to the
sensor network has been addressed before. One of the
approaches currently under investigation is a
distributed database model. A good example of this
approach is the work done at Cornell [2]. A similar
scheme called DataSpace focusing on location
addressing has also been developed in Rutgers [22].
Each node is equipped with a fixed database query
resolver. As queries arrive to a node, the local
resolver decides on the best, distributed plan to
execute the query and distributes the query to the
appropriate nodes. Although this approach takes into
account the distributed nature of the system and
works well in several scenarios, it does not take into
account the proactive nature of the system. The user
is the central place of control and most data flows
to/from the user. This property can prove inefficient
in applications such as target tracking, where it is
better for nodes to form clusters around the target,
collaboratively compute the target's location and just
send the location information back to the user.
Clearly a more flexible way of programming the
sensor network is needed to enable this kind of
behavior.

C. Our approach

To address the problem of operation and
interaction inflexibility, efficiently, taking into
account both, the distributed and proactive nature of
sensor networks, we have developed a framework for
wireless sensor networks called SensorWare.
SensorWare employs active networking concepts in
the form of lightweight and mobile control scripts
that allow the computation, communication, and
sensing resources at the sensor nodes to be efficiently
harnessed in an application-specific fashion.

The SensorWare architecture is based on a
scriptable lightweight run-time environment,
optimized for sensor nodes that have limited energy
and memory. This environment securely hosts one or
more simple, compact, and platform-independent
sensor-node control scripts. The sensing,
communication, and signal-processing resources of a
node are exposed to the control scripts that
orchestrate the dataflow to assemble custom protocol
and signal processing stacks. SensorWare has to also
promote the creation of distributed proactive
algorithms based on the scripting language described
above. For this reason the scripts are made mobile
using special language commands and directives. A

script can replicate or migrate its code and data to
other nodes, directly affecting their behavior. The
replication or migration of a script will be called
“population” in the paper.

A usage scenario can be like the following: A user
sends a query to the sensor network. The query is a
script, a state machine in its simplest form, which is
injected to one or more sensor nodes. The script will
describe among other things how it is going to
populate itself to other nodes. The process of
population can continue depending on events and the
current state. For example as the events of interest are
moving to a different area, the scripts can move along
with them, possibly trying to predict their next move.
The populated scripts will collaborate among
themselves in order to extract the information needed
by the user, and when this information is acquired it
is sent back to the user.

Basically, SensorWare's advantage is that it allows
user interaction that goes beyond simple queries that
check current or past status of a node, or install
triggers for event notification. In SensorWare, a
query can take the form of a script, which can
populate to many nodes, allowing application-
specific handlers to run at these sensor nodes and
process sensor events cooperatively with neighboring
nodes without intervention from the user. In other
words, SensorWare adopts and supports the
distributed proactive model for sensor networks
where each problem is handled by a different general
distributed algorithm, giving the possibility for the
most resource-efficient and user-optimized solution.

III. ARCHITECTURE

First, we show SensorWare's place inside the
overall sensor node's architecture (Figure 2). The
architecture of a sensor node can be viewed in layers.
The lower layers are the raw hardware and the
hardware abstraction layer (i.e., the device drivers). A
real time operating system (RTOS) is on top of the
lower layers. The RTOS provides all the standard
functions and services of a multi-threaded
environment that are needed by the layers above it.
The SensorWare layer for instance, uses those
functions and services offered by the RTOS to
provide the run-time environment for the control
scripts. The control scripts rely completely on the
SensorWare layer while populating around the
network. Static applications and services coexist with
mobile scripts. They can use some of the
functionality of SensorWare as well as standard

195

functions and services of the RTOS. These
applications can be solutions to generic sensor node
problems (e.g., location discovery), and can be
distributed but not mobile. They will be part of the
node's firmware.

Figure 2: The general sensor node architecture

Two things comprise SensorWare: 1) the
language, and 2) the supporting run-time
environment. The next two subsections describe each
of the parts in detail. A third subsection tries to
provide a deeper insight into SensorWare by
discussing some of the most important design
choices.

A. The language

As discussed earlier, the basic idea is to make the
nodes programmable through mobile control scripts.
The choice of a script language instead of a more
general model will be discussed in sub-section C.1
Here the basic parts that comprise the language will
be described as well as the programming model that
emerges from the parts.

First, a scripting language needs proper
functions/commands to be defined and implemented
in order to use them as building blocks (i.e., these
will be the basic commands of the scripts). Each of
these commands will abstract a specific task of the
sensor node, such as communication with other
nodes, or acquisition of sensing data. These
commands can also introduce needed functionality
like moving a script to another node or filtering the
sensing data through a filter implemented in native
code. Second, a scripting language needs constructs
in order to tie these building blocks together in
control scripts. Some examples include: constructs
for flow control, like loops and conditional
statements, constructs for variable handling and

constructs for expression evaluation. We call all these
constructs the "glue core" of the language, as they
combine several of the basic building blocks to make
actual control scripts.

Figure 3 illustrates the different parts of the
SensorWare language. Several of the basic
commands/functions are grouped in theme-related
APIs. We use the term API in a generic fashion, to
denote a collection of theme-related functions that
provide a programming interface to a resource or a
service. There are some commands that do not belong
to any of the APIs and are included in the box named
"other support cmds". Finally there is an important
command which we chose to highlight, called
"wai t ". The wai t command defines to some extent
the programming style for the scripts.

Figure 3: The language par ts in SensorWare

As a glue core we can use the core from one of the
scripting languages that are freely available, so we
are not burdened with the task of building and
verifying a core. One such scripting language, that is
well suited for SensorWare's purposes, is Tcl [29],
offering great modularity and portability. Thus, the
Tcl core is used as the glue core in the SensorWare
language. All the basic commands, such as wai t , or
the ones included in the APIs, are defined as new Tcl
commands using the standard method that Tcl
provides for that purpose.

The set of APIs is basically a way of easily
exporting services and shared resources to the scripts.
The Networking API provides the basic functions so
that the scripts can communicate with each other. The
Sensing API provides the basic functions for
accessing and sharing sensing data from the sensors.
The Timer API defines and sets/resets real time
timers. Finally, the Mobility API provides the basic
functions to the scripts so they can transfer
themselves around the network, access the data that
they carry with them from node to node and also
access some very restricted local memory in the

SensorWare

RTOS

Hardware

HW abstraction
layer

Scr ipts
Apps,

Services

SensorWare

RTOS

Hardware

HW abstraction
layer

Scr ipts
Apps,

Services

Sensor node1 Sensor node2

Transient external user can inject script
Message

exchanging

Code
migration

The glue core
(The basic script

interpreter)

Mobility API

Networking API

Sensing API

wait command

other support cmds Timer API

Extensions to the core

196

particular node that they are currently residing. More
information on each API can be found in [4].

A.1 The general programing model

As discussed earlier, according to the proactive
distributed model the scripts will look mostly like
state machines that are influenced by external events.
Such events include network messages from peers,
sensing data, and expiration of timers. The
programming model that is adopted is equivalent to
the following: An event is described, and it is tied
with the definition of an event handler. The event
handler, according to the current state, will do some
(light) processing and possibly create some new
events or/and alter the current state.

The behavior described above is achieved through
the wai t command. Using this command, the
programmer can define all the events that the script is
waiting upon, at a given time. Examples of events
that a script can wait upon are: i) reception of a
message of a given format, ii) traversal of a threshold
for a given sensing device reading, iii) filling of a
buffer with sensing data of a given sampling rate, iv)
expiration of several timers. When one of the events
declared in the wai t command occurs, the command
terminates, returning the event that caused the
termination. The code after the wai t command
processes the return value and invokes the code that
implements the proper event handler. After the
execution of the event handler, the script moves to a
new wai t command, or more usually it loops around
and waits for events from the same wai t command.

Figure 4 shows an example of a SensorWare
script. SensorWare commands are in boldface. There
are comments in italics but basic Tcl knowledge is
needed to follow the script. The example is sufficient
to illustrate the basic programming style and the use
of some of the most important commands. Without
solving any real-world problem (as it randomly
interacts with the physical world), the basic structure
is evident: At first the script's state is accessed and
updated. After setting new timers it enters the main
wait loop. Events are received and processed
according to their type. Scripts can also wait for a
limited type of events (e.g. the second wait command
of the example code). If certain conditions are met
the script will replicate itself in proper neighboring
nodes. The replicate command will initially notify the
remote node about the code it wants to transfer. The
remote node will reply on whether this code is in his
cache and how many instances of the code are

currently running in it, so the script can take further
action. For more complicated scripts that exhibit
distributed coordination and solve real-world
problems we refer the interested reader to [6].

Figure 4: An example of a SensorWare scr ipt

B. The run-time environment

As important are the scripts in the SensorWare
platform, equally important is the run-time
environment that supports them. Figure 5 illustrates
the basic tasks performed by the environment.

Figure 5: Tasks in the SensorWare run-time
environment

These are data that the script carries with it. The particular ones inform
#the current instance about its parent node (the one which sent the script)
set send_node [Agent_memory_read 0];
set send_node_neighbors [Agent_memory_read 1];
update these data for use in the next replication
Agent_memory_write 0 [getNodeID];
Agent_memory_write 1 [getNodeNeighbors];
#based on the above info find nodes that probably do not have the script
#and store their list in the variable $remaining nodes (commands omitted)
set a timer called RT with the initial value 200ms
setTimer RT 200
the big loop starts
while {1} {
 set ans [wait -msg * -data * -until RT]
#wait cmd returned, find out type and body of event.
 set type [lindex $ans 0]; set body [lrange $ans 1 end]
 switch $type {
 w { # a timer expired, do something.
 setTimer TT 100
 }
 s { # data was sensed.
#wait for sensing data threshold to be passed, within 5 ms
 set ans [wait -data -threshold 10 -until 5]

 set type [lindex $ans 0];
 if { $type = "s" } { set ready 1 }
 }
 n { # a network message was received.
 If { $ready} (Agent_replicate $remaining_nodes; exit; }
 }
}

Admission Control

& Policing of
Resource Usage

Scr ipt M anager
(script state keeping,
spawns new scripts)

Resource Abstraction & Resource M eter ing
Tasks

Radio/
Networking

Sensing CPU &
Timers

197

The Script Manager is the task that accepts all
requests for the spawning of new scripts. It forwards
the request to the Admission Control task and upon
receiving a positive reply, it initiates a new
thread/task running a script interpreter for the new
script. The Script Manager also keeps any script-
related state such as script-data for as long as the
script is active. Possible attacks such as snooping or
spoofing are banned by the strict security model (see
section C.3). The script manager also keeps a script-
code cache in order to reduce code transmissions over
the wireless channel. The Admission Control and
Policing of Resource Usage task, as the name reveals,
takes all the script admission decisions, makes sure
that the scripts stay under their resource contract, and
most importantly checks the overall energy
consumption. If the overall consumption exhibits
alarming characteristics (e.g., the current rate cannot
support all scripts to completion) the task selectively
terminates some scripts according to certain
SensorWare policies. Resource management is
discussed further in sub-section C.4 .

The run-time environment also includes three
"Resource Abstraction and Resource Metering" tasks
(sometimes referred to as "Resources Handling" tasks
for brevity). Each task supports the commands of the
corresponding APIs and manages a specific resource.
For instance, the “Networking” task manages the
radio: i) it implements an energy efficient routing
protocol, ii) it accepts requests from the scripts about
the format of network messages that they expect iii) it
accepts all network messages and dispenses them to
the appropriate scripts according to their needs, and
finally iv) measures the radio utilization for each
script, a quantity that is needed by the “Admission
Control & Policing of Resource Usage” task. As
another example, the “Sensor Abstraction” task
manages the sensing device. It accepts all requests for
sensor data from all the scripts and decides on the
optimal way to control the sensing device. It also
measures the sensing device utilization for each
script. Finally, the "CPU and Timers" task accepts the
various requests for timers by all the scripts and
manages to service them using the small number
(usually one or two) of real-time timers the embedded
system provides. In essence the task provides many
virtual timers relying on few real timers provided by
the system. The task also meters the CPU utilization
by each script, and can put the CPU in idle mode, if
the embedded system allows this functionality.

Figure 6 depicts an abstracted view of
SensorWare's run-time environment.

Figure 6: Abstracted view of SensorWare's run-time
environment

Most of the threads running are coupled with a
generic queue. Each thread "pends" on its
corresponding queue, until it receives a message in
the queue. When a message arrives it is promptly
processed. Then the next message will be fetched, or
if the queue is empty, the thread "pends" again on the
queue. A queue associated with a script thread is
receiving events (i.e., reception of network messages,
sensing data, or expiration of timers). A queue
associated with one of the three resource handling
tasks, receives events of one type (from the specific
device driver that is connected to), as well as
messages that declare interest in this event type. For
instance, the Sensing resource-handling task is
receiving sensing data from the device driver and
interests on sensing data from the scripts. The Script
Manager queue receives messages from the network
that wish to spawn a new script. There are also
system messages that are exchanged between the
system threads (like the ones that provide the
Admission Control thread with resource metering
information, or the ones that control the device
drivers).

Portability is a major issue in SensorWare as we
envision our system to be used by many diverse

 generic queue

event

interest in event

system thread/task
script thread/task

Networking

Sensing

CPU &timers

Script Manager
Admission

control

Script 1

Script n

device driver System msg (e.g.,
req, reply, resource
metering info)

Radio

Sensing
device

Timers
cpu ctrl

Resource metering info from
all 3 resource handling tasks

The Manager spawns a new
thread for every new script.

. . . .

198

platforms. The structure of the run-time environment
remains the same across platforms, as shown in
Figure 6. The only parts that need to be changed are
some RTOS definitions (e.g., thread creation, queue
definition and handling) for different RTOS, and
interactions with the device drivers for different
embedded systems (systems with different hardware
and/or different design of device drivers).

C. Design choices in SensorWare

In this subsection we are going to present the
issues that are important for SensorWare highlighting
the differences with traditional Mobile Agents when
applicable. The discussion will concentrate on: 1)
The scripting abstraction 2) Coordination and
mobility models, 3) Code safety and security, and 4)
Resource management.

C.1 Scripting abstraction

The SensorWare scripting model has its
philosophical roots in various successful systems
where an embedded run-time scripting environment
provides users with scriptable access to the resources
of a complex system, such as JavaScript in web
browsers and servers, and Tcl in simulators (e.g. ns),
CAD tools (e.g. Synopsys tool chain), and RTOSs
(e.g. VxWorks).

The expressiveness of our programming model
does not impair even to a minimum the possible
distributed algorithms developed. On the contrary,
programmers of distributed proactive algorithms for
SNs find it natural to program in the SensorWare
language. This is because the programmers do not
need lower-level access to the nodes but rather a
simple glue core and a set of well-defined and
functionality-rich APIs. The choice of a scripting
language provides SensorWare with many
advantages. First, in scripting languages it is much
easier to provide a sandbox execution environment
[40], thus helping code safety, a critical need when
mobile code is considered. Second, the interpreted
version of the scripts makes them easily portable, an
important advantage when multiple sensor node
platforms are considered. Third, the particular Tcl
core is so lightweight and easily customizable that it
is ideal for the restricted environment of a sensor
node.

C.2 Coordination and mobility models

It is important to begin the discussion in this area
by stating the major difference between mobile
agents for traditional data networks and SensorWare's

mobile scripts. Stated succinctly, their intended uses
and deployment scenarios are different. A traditional
mobile agent is meant for an Internet-application
environment possibly with mobile ends and
intermittent connections. It is viewed as a free-
roaming entity, mostly autonomous and self-
contained (i.e. the application usually consists of one
agent; there is no need for distributed computing).
The agent executes in a machine until certain
conditions are met, and then it migrates to the next
suitable machine to execute the same or different
code portions. SensorWare’s scripts on the other hand
are rarely an application on their own. An application
will consist of many simple scripts, executing in
different nodes, which are tightly collaborating
among themselves. This set of scripts will probably
expand/shrink and move as physical phenomena are
evolving. The mobility of the scripts is used to
properly diffuse the distributed algorithm into the
network.

This major difference in intended uses and
deployment scenarios is the cause for all other
operational and architectural differences. One such
operational difference is the coordination model.
Sometimes it is desirable for traditional agents to
coordinate among themselves. Because this
coordination is usually done in a loose manner and
the agents usually roam in networks with intermittent
connections, the direct communication model of a
client-server scheme often makes programming hard.
Several enhanced schemes were proposed in the
literature to alleviate the agents from knowing the
exact address of the other agent, as well as the exact
time that they wish to communicate. For example, the
meeting-oriented model [42], the blackboard model
[9][13], and the Linda-like model [1][10], all achieve
increasingly higher spatial and temporal uncoupling
of the agents. For SensorWare scripts on the other
hand, the direct communication model is perfectly
suited. As stated earlier the scripts are envisioned to
perform very tight collaboration among them. In
addition, this kind of collaboration will happen
among locally clustered and static nodes, making the
peer-to-peer direct communication easier. Spatial and
temporal uncoupling mechanisms will just introduce
an unwanted overhead. The main command used for
message passing in SensorWare is send <dest>
<data>, with dest::=<nodeid:name of code:user:instance>,
and data::=<string> (e.g. send *:aggregation.max.temp:*
“1 3.5” sends the string “1 3.5” to all scripts named
“aggregation.max.temp” residing in any of the
neighboring nodes, belonging to any user).

199

Another architectural difference of SensorWare
with respect to data network frameworks is the
mobility model. In most traditional mobile agent
environments there is a command to capture and
restore the complete state of a migrating agent. This
way, the execution of an agent could be stopped at an
arbitrary point in one node, and resume execution in
another node from the exact same point, as nothing
happened. This form of mobility is called “strong
mobility” as opposed to “weak mobility” that
SensorWare supports. Weak mobility basically
supports the transportation of the code and data to a
remote node, but the execution starts from well-
known fixed entry points in the code. Weak mobility
is also supported by some commercial agent systems.
The prime reason for this is that strong mobility
requires customized interpreters, thus making
penetration in the market more difficult.
SensorWare’s reasons on the other hand are different.
Firstly, SensorWare must be lightweight. Secondly
and more importantly, there is no evident need for
strong mobility in our scenario. There in no need for
agents that hop from node to node, each time doing a
portion of the work. SensorWare needs only an
efficient way to diffuse the distributed algorithm into
the network.

C.3 Code safety and security

We distinguish between code safety and security
in the following sense: code safety relates to the
execution of a script in the SensorWare run-time
environment inside a node, whereas security relates
to the network as a whole. For code safety, one would
want guaranties that a buggy or malicious script will
not have any effect on other scripts or on the run-time
system. For security, one would want guaranties that
an intruder could not gain access to resources or
information of the network, and could not affect the
use of the network by legitimate users. SensorWare
does not consider general security issues. Current
SNs though, have fewer security concerns than data
networks, because they are assumed to have one user
or a set of collaborating users. The major problems
are authenticating the current set of users and deny
any service to anyone else, as well as encrypt the
data. Wen et al. [41] describe a security scheme for
sensor networks that could easily work alongside
with SensorWare. If the problem of legitimate access
to the network is solved, code safety is the only issue
in achieving overall security.

Code safety is an integral part of SensorWare as it
is closely related to the language and run-time

environment design choices. SensorWare employs a
simple and strict code safety model. The model
adopts the sandbox environment approach, which is
one of the four practical techniques for mobile code
safety [36]. Usually this approach is coupled with
code-signing (like the Java model), in order to
associate different code portions with different
resource access levels. This is not needed in
SensorWare though, as all scripts have the exact same
privileges. The sandbox environment is not a single
consideration in our framework but rather emerges
from the design choices made in the language, in the
way scripts are executed in the run-time environment,
and in the resource management.

One needs to provide protection under the
following possible attacks [12]: i) information
leakage, ii) information tampering, iii) resource
stealing, iv) antagonism (no gain for the attacking
script, but harmful for the attacked scripts). At the
language level, the choice of an interpreted scripting
language provides many advantages. No low-level
control is available in the scripts and the interpreter
provides an ideal framework to sandbox the
executing programs [40]. Furthermore, our scripting
framework is stripped down of any commands that
could directly access global state or global resources.
The only shared resources are accessed under
restrictive APIs. Basically the APIs allow the scripts
to declare 'interest' in the resources and the
appropriate resource-handling task is capable of
safely processing multiple requests from multiple
scripts. In addition, when multiple scripts are running
on a node they execute in different threads under
different interpreters having their own thread stack.
The interpreters are altered so that they operate only
within the limits of the stack. Thus it is virtually
impossible for one script to affect accidentally or
deliberately the state of another script or the system's
state. Possible security breaches, like resource
stealing, or denial-of-service attacks (antagonism),
are eliminated by the resource management in
SensorWare, which strictly police all scripts at run-
time. The resource management issues are discussed
in the following sub-section.

C.4 Resource management

Even though there are no competing users, there
are competing applications; thus one cannot blindly
replicate/migrate any script at any node. The
resources are limited (especially energy) and must be
shared among applications. Even in the case where a
single application exists in the whole network, it

200

might choose to alter its behavior to conserve energy.
In SensorWare, resources are metered at run-time, for
all scripts, by the corresponding resource handling
tasks, and a central task makes admission decisions
and polices the scripts according to their pre-
negotiated values. As mentioned previously, the
premium resource in sensor networks is energy. The
energy consumed by a script running on a node
depends on many attributes. Generally, the script's
usage profile of the node's modules (e.g., radio
module, CPU, sensing module) in conjunction with
the profiles of the other scripts currently sharing the
node's environment will determine the overall energy
consumption, and the amount that the specific script
is contributing to this quantity.

Since some resources are sharable by the scripts
(e.g. radio in receive mode, sensing device), while
others are not sharable (e.g. the radio in transmit
mode, the CPU), the task of initially estimating, and
later measuring the impact of an admitted script on
the energy consumption, is especially difficult. As an
example, imagine that a script, already running in a
node, needs to have the radio in listening mode,
100% of its lifetime. An incoming script, with the
same listening requirements and zero transmitting
requirements, should have little effect on the overall
consumed energy and could be easily admitted. If the
first script was absent though, the admission decision
could be different.

In SensorWare the profile of the script consists of
the values: 1) script's lifetime in a particular node, 2)
percentage of lifetime the radio is in “ listen” mode, 3)
transmitted bytes, 4) percentage of lifetime that the
sensing module is active, and 5) time that the CPU is
active. These values along with a quantity named
“ importance indicator” that introduces a usefulness
metric for the scripts, will determine the admission
and further survival of the script in a node. The
energy-based admission control and policing rules are
an integral part of SensorWare and involve intricate
issues. Some of these issues include the real-time
measurement of the script’s profile values, as well as
the added energy load of a script with respect to a
specific set of scripts running in the node. Other
issues involve alternate definitions of usefulness
metrics, and analysis of heuristic admission and
policing rules to maximize the useful work done,
under energy constraints. Our research explores
certain heuristic rules and reports 33%-86% increase
in useful work done (i.e., sum of scripts completed
multiplied by their importance indicator), under finite
energy supplies. Resource management will not be

further analyzed in this paper; more can be found in
[4].

IV. RELATED WORK

SensorWare falls under the broad family of active
networking frameworks. As we mentioned its closest
relatives are Mobile Agent frameworks, which we
compared against SensorWare throughout the text.
One might wonder how does SensorWare compares
with other active networking frameworks, especially
some that exhibit obvious similarities. One such
framework is the PLAN language [20]. PLAN, as
SensorWare, uses a scripting abstraction to describe
simple packet programs based on more advanced
node-resident services, adopts a simple but strict
language model to achieve safety (and resource
management, unlike SensorWare), and supports the
weak mobility model. However, the goals of PLAN
and SensorWare are different which lead to subtle but
important distinctions. First and foremost PLAN and
SensorWare have completely different programming
models. SensorWare is event-driven, with a script
interacting with the physical world and other scripts.
PLAN is packet oriented, focused on executing
simple programs as packets pass through the active
nodes. As a “side-effect” SensorWare's APIs offer
different services than PLAN's build-in functions.
Less obvious are the differences in resource
management. PLAN, focusing on network traffic, sets
bounds on resources used (CPU, memory,
bandwidth) through the design of the language. For
instance, a program has predictable termination time;
linearly proportional to the packet size that is
carrying it. This model is just not acceptable in our
case as we depend on unpredictable external physical
events. Furthermore, the prime resource is energy,
complicating things as discussed in section III.C.4 .

It would also be helpful to compare SensorWare
with other programming platforms for SN, such as
TinyOS from Berkeley [21]. TinyOS can be viewed
as a node-level operating system, much like any other
embedded OS, having different design focus though
from traditional embedded OS. SensorWare can be
viewed as a system-level OS, which is based on the
existence of a node-level OS. Essentially, the two
frameworks belong into different categories, with
TinyOS trying to provide efficiency at the node level,
and SensorWare working at the system level.
Furthermore their whole philosophies are different.
SensorWare wants to make SN open at runtime.
TinyOS focuses on efficient programmability in the

201

pre-deployment phase. Finally, one might be
interested to know if TinyOS can be used as a
substrate for SensorWare. This cannot be done, as
TinyOS architecture is so simple (by design) that
does not support common features of embedded OS
such as multi-threading, needed by SensorWare.

In the rest of the section we only consider work
that tries to make SN programmable using active
network concepts. Therefore, general mobile agent
platforms are not discussed any further, nor any
distributed database systems for SN are presented.

Particularly instructive is to study the relationship
between SensorWare’s mobile scripting approach and
the mobile code approach in Penn State’s Reactive
Sensor Network [34] (RSN) project under DARPA’s
SenseIT program [37]. RSN’s focus is on providing
an architecture whereby sensor nodes can: (i)
download executables and DLLs, identified by URLs,
from repositories or their cache, (ii) execute the
program at the local node using input data which
itself may be remotely located and identified by a
URL, and (iii) write the data to a possibly remote
URL. The RSN model is in essence Java’s applet
model generalized to arbitrary executables and data,
and combined with a lookup service. The focus of
RSN is quite different from SensorWare. Differences
include: (i) RSN provides a general lookup and
download service, (ii) RSN does not seek to provide a
scripting environment with an associated sensor node
resource model for use by scripts, and (iii) RSN’s
notion of mobility is download oriented, as opposed
to SensorWare’s approach of a script which can
autonomously spawn scripts to remote nodes. RSN
views sensor nodes as network switches with
dynamically adaptable protocols, trying to directly
map the motivation and methods of classical active
networks into sensor networks. Unfortunately such an
approach does not address the basic problems of
sensor networks. Although one might be able to
construct some distributed applications using the
above scheme, by no means the creation and
diffusion of distributed proactive applications into the
network is supported by its architecture.

Finally, extremely relevant is the work that is
being conducted in University of Delaware by
Jaikaeo et al. [23] called SQTL (Sensor Querying and
Tasking Language). Having the same goals as our
research, but starting from a different point (database-
like queries), the researchers end up with the same
basic solution as SensorWare, namely a tasking
language for sensor networks. To lively demonstrate

the relevance to our work we are quoting an excerpt
from [23].” We model a sensor network as a set of
collaborating nodes that carry out querying and
tasking programmed in SQTL. A frontend node
injects a message, that encapsulates an SQTL
program, into a sensor node and starts a diffusion
computation. A sensor node may diffuse the
encapsulated SQTL program to other nodes as
dictated by its logic and collaboratively perform the
specified querying or tasking activity.”

SQTL fits in a more general architecture for
sensor networks called SINA (Sensor Information
Networking Architecture) [38]. SINA uses both SQL-
like queries as well as SQTL programs. Some of its
main features include: 1) hierarchical clustering, 2)
attribute-based naming, 3) a spreadsheet paradigm for
organizing sensor data in the nodes. SQL-like queries
use these three features to execute simple querying
and monitoring tasks. When a more advanced
operation is needed though, SQTL plays the essential
role by programming (or “ tasking” as the researchers
from Delaware call it) the sensor nodes and allowing
proactive population of the program. In SINA, SQTL
is used as an enhancement of simple SQL-like
queries. The framework is there mainly to support the
queries not the mobile scripts. As a consequence,
SQTL scripts do not have all the provisions that
SensorWare scripts have. The most important of them
are: 1) Rich sensor-node-related APIs (e.g. for
networking, sensing). 2) Diverse rules for mobility. A
SQTL script can only specify the nodes to be
populated. SensorWare first checks if the script is
already in the remote node and offers a multitude of
possibilities depending on how many instances of the
script are already running in the remote node. 3)
Code modularity in order to share functionality and
avoid redundant code transfers 4) Support for multi-
user scripts. 5) Resource management in the presence
of multiple scripts running in the node. For more
information on SensorWare's provisions for efficient
applications in SN one can refer to [5].

V. CONCLUSIONS

In this paper we argue that the development of a
framework based on a lightweight mobile scripting
mechanism will help bring many desired properties in
sensor networks. It will make the sensor networks
programmable and open to external users and
systems, keeping at the same time the efficiency that
distributed proactive algorithms have. We present the
framework's architecture and discuss design choices.

202

SensorWare has been used in building distributed
algorithms for SN problems with very promising
results [3].

VI. REFERENCES

[1] S. Ahuja, N. Carriero, D. Gelernter, “Linda and Friends” , IEEE
Computer, Vol. 19, No.8, pp. 26-34, August 1986.

[2] P. Bonnet, J. Gehrke, and P. Seshadri, “ Querying the Physical
World” , IEEE Personal Communications, October 2000.

[3] A. Boulis and M. B. Srivastava, "Aggregation applications in
resource-constrained distributed systems" TM- UCLA-NESL-
2001-11-002, http://nesl.ee.ucla.edu/TM/

[4] A. Boulis, “Designing Proactive Sensor Networks” , Prospectus of
the Ph.D. dissertation, Electrical Engineering Dept. at UCLA,
March 2001,
http://www.ee.ucla.edu/~boulis/phd/Qual_proposal.pdf

[5] A. Boulis and M. B. Srivastava, “Enabling Mobile and Distributed
Computing in Sensor Networks” , TM-UCLA-NESL-2001-07-001,
http://nesl.ee.ucla.edu/TM/

[6] A. Boulis, “ Illustrating Distributed Algorithms for Sensor
Networks” , http://www.ee.ucla.edu/~boulis/phd/Illustrations.html

[7] G. Cabri, L. Leonardi, and F. Zamponelli, “MARS: A
programmable coordination architecture for Mobile agents” , IEEE
Internet Computing, vol. 4, no. 4, pp. 26-35, Jul.-Aug. 2000.

[8] G. Di Caro and M. Dorigo, “Mobile Agents for Adaptive Routing”,
Proceedings of the 31st Hawaii International Conference on
System, IEEE Computer Society Press, Los Alamitos, CA, 74-83,
1998.

[9] L. Cardelli, D. Gordon, “Mobile Ambients” , Foundations of
Software Science and Computational Structures, Lecture Notes in
Computer Science, No. 1378, Springer-Verlag (D), pp. 140-155,
1998.

[10] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, A. Knoche,
“Coordinating Multi-Agents Applications on the WWW: a
Reference Architecture” , IEEE Transactions on
SoftwareEngineering, Vol. 24, No. 8, pp. 362-375, May 1998.

[11] L. Clare, G. Pottie, J.R. Agre, “Self-Organizing Distributed Sensor
Networks” , Proceedings of SPIE conference on Unattended
Ground Sensor Technologies and Applications, pp. 229-237, April
1999.

[12] G. Coulouris J. Dollimore, amd T. Kindberg, "Distributed systems-
concepts and designs", Chapter 16, Addison-Wesley, 2nd edition,
1994.

[13] P. Domel, A. Lingnau, O. Drobnik, “Mobile Agent Interaction in
Heterogeneous Environment” , 1st International Workshop on
Mobile Agents, Lecture Notes in Computer Science, Springer-
Verlag (D), No. 1219, pp. 136-148, April 1997.

[14] M. Dorigo, V. Maniezzo & A. Colorni, “The Ant System:
Optimization by a Colony of Cooperating Agents” , IEEE
Transactions on Systems, Man, and Cybernetics-Part B, 26(1):29-
41, 1996.

[15] eCos: Embedded Configurable Operating System,
http://sources.redhat.com/ecos/

[16] D.Estrin, R.Govindan, J.Heidemann (Editors), “Embedding the
Internet” , Communications of the ACM. Vol. 43, no 5, pp. 38-41,
May 2000.

[17] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks” , ACM
Mobicom Conference, Seattle, WA, August 1999.

[18] R.S. Gray, “Agent Tcl: a flexible and secure mobile-agent system”,
Proceedings of 4th Annual Tcl/Tk Workshop '96, Monterey, CA,
USA, 10-13 July 1996. p.9-23. 235 pp.

[19] R. S. Gray, “Agent Tcl: a flexible and secure mobile-agent
system”, Dr. Dobb's Journal March 1997.

[20] M. Hicks, P. Kakkar, J. Moore, C. Gunter and S. Nettles, “PLAN:
A Packet Language for Active Networks” , Proceedings of the
International Conference on Functional Programming (ICFP '98),
1998.

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister,
“System Architecture Directions for Networked Sensors” ,
Proceedings of ASPLOS-IX, November 2000 Cambridge, MA,
USA

[22] T. Imielinski and S Goel, “DataSpace: Querying and monitoring
deeply networked collections in physical space” , IEEE Personal
Communications, Oct. 2000.

[23] C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Querying and
Tasking of Sensor Networks” , SPIE's 14th Annual International
Symposium on Aerospace/Defense Sensing, Simulation, and
Control (Digitization of the Battlespace V), Orlando, Florida, April
26-27, 2000.

[24] D. Kotz, R. Gray, “Mobile Agents and the Future of the Internet” ,
in ACM Operating Systems Review, 33(3), 1999.

[25] J. Labrosse, " MicroC/OS-II: The Real Time Kernel", CMP Books,
November 1998.

[26] D. Lange, M. Oshima, “Programming & Deploying Mobile Agents
with Java Aglets” , Addison-Wesley, 1998.

[27] P. Marques, P. Simoes, L. Silva, F. Boavida
J. Gabriel, “Providing Applications with Mobile Agent
Technology” , Proceedings of the Fourth IEEE Conference on Open
Architectures and Network Programming, (OPENARCH’01),
Anchorage, 2001.

[28] NS-2 Simulator, http://www.isi.edu/nsnam/ns/
[29] J. K. Ousterhout, “Scripting: higher level programming for the 21st

Century” , Computer, vol.31, (no.3), IEEE Comput. Soc, March
1998. p.23-30.

[30] J. K. Ousterhout, “Tcl and the Tk toolkit” , Addison-Wesley, 1994.
[31] S. Park, A. Savvides and M. Srivastava, “SensorSim: A Simulation

Framework for Sensor Networks” , Proceeding of MSWiM
2000,Boston, MA, August 11, 2000.

[32] G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network
Sensors” , Communications of the ACM. Vol. 43, no 5. May 2000.

[33] M. Ranganathan, V. Schaal, V. Galtier, and D. Montgomery,
“Mobile Streams: a middleware for reconfigurable distributed
scripting” , First International Symposium in Agent Systems and
Applications, pp. 162-175, Oct. 1999.

[34] Reactive Sensor Networks, http://strange.arl.psu.edu/ RSN/
[35] Rockwell WINS nodes, http://wins.rsc.rockwell.com/
[36] A. Rubin, and D. E. Geer, "Mobile Code Security", IEEE Internet

Computing, November-December 1998.
[37] SenseIT program,

http://www.darpa.mil/ito/research/sensit/index.html
[38] C. Srisathapornphat, C. Jaikaeo, and C. Shen, “Sensor Information

Networking Architecture” , International Workshop on Pervasive
Computing (IWPC'00), Toronto, Canada, August 21-24, 2000.

[39] D. Tennenhouse, “Proactive Computing”, Communications of the
ACM. Vol. 43, no 5, pp.43-50, May 2000.

[40] T. Thorn, "Programming Languages for Mobile Code" INRIA
Technical Report No. 3134, March, 1997.

[41] V. Wen, A.Perig, R. Szewczyk, “SPINS: Security suite for Sensor
Networks” , Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking, Rome, Italy,
July 16-21, 2001.

[42] J. White, “Mobile Agents” , in J. Bradshaw Editor.: Software
Agents, AAAI Press, MenloPark (CA), pp. 437-472, 1999.

203

The Bits and Flops of the n-hop Multilateration Primitive
For Node Localization Problems

Andreas Savvides, Heemin Park and Mani B. Srivastava
�asavvide,hmpark,mbs�@ee.ucla.edu

Networked and Embedded Systems Lab, EE, UCLA

ABSTRACT
��� ������ �	
����� �� ��� ����		�	 ������ ��	 �����
���� ������������� ������������ ��� ������ ��� �����������
��	 	��������� �� ��������	 �������� ������������ � ����
����� ����� ����� �� ��� ������� �� �������� ����������� ����
����� ������ �� ��� ������� �� ������������ �� ��������
��� ����
���� ������� ��	 �����������!"#$� %� ���� ������ �� ���	�
��� ���� ���������� ���� �� �	���� ��	� ������������� ���
	���������	 ����������� �����	 	�������	 ���� ������� �	�
��� 	������	 �������� ������������ �� 	����
�� ����� ������
��� ��������� ���� �� �������� �� � ��� ������������ ����
������ ������! ��� �������� 	������� ���� ��� ��������� ��	
�������� �� �������� �������� �� ��� �������� ��������� &��
������ ��	�
�	��� ������������ ��
� ������� ��� �����������
��� ��� ����������� ��	 ������ ��������� �� ��	�
�	�����
������� ���
���� ���� �� ��	� ������������� ���� ��� �������
��
��� ���
� ���� ������� �� � ������� 	���������	 �������
��� ��� �� ��� �������� �� ��� ����� ���	
��	��	
�� �
��

	
��� �� ��������� ���� ��� �������� ��� ��������� �� ��	��
���� ��� �������� ���� ���� ���� ����� ��������� �������
'�� ���������� ������� ���� ���� � (����������� �������� �

�������� ��������� ���� ������� �� ��� ������ �������� ���
�� �������	 ������� ���� ������ ����������� ����)(�� *
+,'-� ��� ��	�. � �� ������	 �� ��� ����������	 ������
������ ���� ����� ������� �� �� ����� ���� ������� �� ���
������� ��	�� ��	 ������� ������������ ��� �������� ��
��� �������	 �������

1. INTRODUCTION
��� �������� �� �
�� ������ ��	 ������� ����		�	 ����
������� ��	 �������� ���������� ���� ������������� ����	 ��
���������������� �������)��. ���������� ��� ��	 ��
��� ��������� �� �������� ������ �������� �� � ��
�� ����� ��
��������	 ����		�	 �������� ��� ����������� ��	 	�
����
������������ ��� ����� ������� ��� ��������� ����� �/�����	�
%� ��	��� ��������� ������ �������� ��� �����	� ����� ���	
��� ���	����������	 ����������� �� ������/ �0������� ��

�1����� ����	 �� �
������ 	������ �� 2���� #3

���������� %� ���	��� ��
���������� ����� �������� ��� ����
���� ��� ������� ��������� ������ ����������� ��	������	
�������� ������ 2���� ��	 	������� ������ ��� �������� ����
�� ����� ��������	 ������� �� �� !����	����� ������� �����
���
�� �� �����
� � ������ ������� ����! "#$� 4������ �� �����
��0���������� ������ �������� ��� �/�����	 �� ��� �� �����
	���������	 ������� ����� ����������� �� ����		�	 ����	�
��� �������� ��� ������ �� ���� ������� ������� ��� �����
������ �� ��� �� ����	����� ��	 	��������� ����������� ��
������ �����������������	 	�
���� ���� ������	 ������ ��	
����������� ������������� 56 4�������7� 1��� ���� ��� �/�
����� ��� � *8� 9���� ����� ���������� ���� &���� ����
3#: ����� �� +,&�8 ������ ��	 9 ��������� �� 1&� �
��� ����� ��	�� ��	 ���� �������� ;��� ���� ������� �� ��
����� ��� ���� ���� ���� ��	�� ��� ��0����	 �� ������� ����
��������
� ����������� �� � �����	 �
���� %� ���� ����� ��
�/����� ��� ���� �������� ���� �� �	���� ��	� �������������

'�� ���� �� ����
���	 �� ��� ���� ���� ���� ������ ����
���� ������������ ��� ����	 �� ��� �	���� 	��������� ��
�������� ������� �� 	�������� �� ������ ��/�� ��
���������
�� ������� 	�<����� �
���� ��	 ������ ����� 2�	���� ���� ��
� ������ ��������� %� ���� �����/�� �� �� �� ������ ������
����� ���� ���� ��	� �� ����� �� ��� ��������� ���� ������
�	�� �� ��	� �������� �� ���	�	 ��� ��������� ��� ����������
������� �� �����	 �
���� ��	 �� ������� ����� ������� ��
��
��������� ���� �� ����������� "=$ ��	 ������� ����������
+����������� ������ ���� �� �	���� ��	 ������ �������� ">$�
"=$ ��	 "9$ ����� ����	 �� �� ��� ���������� �� ����� ��	�
��������� ���������� ��� ������� ���� �������� ��	� ���������
���� �� �������� �� ��	���������� ������� ��� ������������ ��
���� ��� ��� �� ���0������ ���������� +�� ���� ������� ��
��
� 	�
�����	 ��� ����� ���	
��	��	
�� �
�
	
�� �� �����
���� ��	� ��������� �
�� �������� ����� �� �������� �����
���������� �������� 	�
���� ��� 	�<����� ������������)��� ���
�������	� ���������� ������ ��	�� ������ ��������. �� �������
	��������)������� �������. �� 2/�	 ���	������ 5���� ����
������� ����������� ��	 ��� ����� ��������� �� ���	������
�� ������������ ������� ��� �� ���������	 ��	 ���
�	 ��
������ ��������� �� ��	� �������� ���������� 4���	�� �	����
	���������� ��� ����� ��������������� �������
� ����	 ��
������ �� ����� ������ �� 	����� ����		�	 ������� ��	 ����
��/� ����� ������������ ���� �� �������� ������������ ��	
����� ��	 ��������� �������� ����	� ����	����� %� ��	��� ���
������������ �������� ��� ��������� ��� ����� ���������������
�������
� ��� ������ ������������ �� ��� �������� �� ������
����� %� ����� ����������� �� ��� �����
� ������ ����������
�� ������ ���������� �/������ �����	� �� �����
� ������

204

goodelle
Text Box
Appendix N:

������� ��������� ;� ����� �� ��� �����	 �� � �������
�
������� �� ��� �� ���	 �� � ��������� �� ������ ������� ��
���� 	�<����� ���2���������� ��� ����� 	���������	 ���� ��
��� �������
� �� ��� ���	� �� ��Æ����� �� ������� ���������
���� �� � ������� ������ ���� ���� � ������ ��	��� ������
������� �������� 	��� ��� ��0���� ��� ������� ��������� ���
����������	 ����������� ��	�� �� ��� ����� ���	� ��� ��
���	 �� ���� �� � ������� ������ ���� �� ������ ����������	
�� ������� ����������	� %� ���� ����� ��� ������������� ���
0��������� ��� �� ������ �	?����	 �� ���� �� ������� ����
������� �� ��� ����� ������������� ��	 ����	������� ����
������ �� ��� �������

1.1 What is presented in this paper
'�� ������������ �� � �����	 ���� ����� �	���� ������
��	�� ��� ����	����� ����� �������
�� �� ���
� � ������
���������� ������������ ������� �� �������� �������������
���� ���
��� ��� ���� �� ����� ��0�������� ���� ��������
%� ���� ����� �� ������� ��� ����������� ��	���@ ��������
���	 ��	 	���������	� ��� ���� ���� �� ��� 	��������� �� ��
	���������� ��� ���������� �� ��� 	���������	 �������� ��
������� ��� ������ ������� �������� %� ��� ����� �� ���

��������� ��� ������� �������� �������� ��� ���� ��	� �� ���
��� �������	 ���� � ������
������ ����� ���� �����	��� ���
��� �
������� �������� ����������� ��	 ��� 	������� ��������
����� ������� ����������� ��	��� ��� �������	 ������
�		������ ���� ��������� �� ����� �
��� ����� ������)(��
����. �� ������� ���	�����)��� ������ ��	��. ��	 �� ����
������ �������� ��	 	������� ����������� ����������� �
��
�������� ����� &������� ���� �� ��� ��	�� ��� ��Æ�����
������ ��	 ����������� ��������� �� ���
� ���� �������
��	�
�	������ ��� ��	�� ��������
��� ���
� ���� ������� �� ����
������� ����� ����������� ��	 �������������� & 	�������
������� �� ��� �������� �� ��� �����	������ �� � �����������
������� ��� ���������� ��� ��������� �� ��	�� ���� ��� �����
������ ������	 �������� ���� ���� ���� ��� ������ ��	���
%� ��� 2��� ������ ��	�� �������� �������
�� �� ������� ����
2���������� ��� �����	�	
�� ���	���� ����� ����� ��	�� ��
�������� ����� �������� �
�� �������� ���� ����� ���
������
����� ������������� A����� ��� �����	 ������ ��� ��	��
��� ������ ����������� ������������� �� ������ � ���	� ����
���� �������� �� ����� ���������� ����� ��������� ��� �����
�� ��2��	 �� ��� ����	 �����)�������� ��2������ �����. ���
��� � B����� 2���� "#9$� ��� ����	 ����� ��� ��� ��������
��	��� �� ������������ ����������	 ��	 	���������	� ���
	���������	 ����������� ��	�� �������� ������� ��
���� ��
��� ��������� 4� ���������� ��� B����� +����� ��������
���� �� ��� �����/� � ����������� �������� ��	�� �� � ������
��� ������� ��������� � ���	���� ���� ������� �� ��� ������
�������� ������������ ���� ���	���� ������� ���� �������
��	� ������ �� ��� ����������� ������� �� �������� ���
�������� ������� �������� �������� �� ���������� ��������
���� �������� '�� ������� 	���������� ���� ����� �����������
����� ����� �� �������� ��� � ����� �� ����� ���������������
����������	 ��	�� �� ��������
��� ���
� ��� ���������� �����
�������� ������� �� ��	� ������������� � ������� ���� ����
�� ��� ��	�� ��� ���
� ��	�
�	������

���� ����� ��� ��� ���� ����� #. �� 	������� ��� ������
������ ��	�� �� ��� ����� ��������������� �������
�)����
�������	 ��	 	���������	. ��	 :. �� ���������� ���� �� ���
�������� ���������� �� ��� ����� ��������������� �������
�
�� �
�������� ��� 	�<����� ����	� �� ������������ ������

������� ��������� ������������� ��	 �������� ��� �������
��������	 ���� ��� 	����������	 �� � ��� �� ����������� ��
���: ��	 &�,&4 ���� ������� ��� 	�<����� �����������
������ ��� ����������	 ��	 ��� 	���������	� +����������� ��
	�
�����	 ��� 	��������� �����	 ��� �/���������� ��������
������� 	�
��� ��� ������������� 	�������	 �� ������� =�*� ;�
��� ���� 	�
��� �� 	���������� ���
�������� �� ��� ��������
�� ������������ ���� ��������� �� � �������� �������	 �����
���� ������� 	�
��� �� ��
� 	�
�����	 ��� ���	������ �/����
������ ������	 �� ��	� �������������

2. RELATED WORK
C�	� ������������ ��� ���� ��� ����� �� ����
� �������� ��	
���� ������� ��
� ��	� ����� ���������� �� ��� ���� ���
������ ��������7� 1&A&1 ������ "#D$ ��	 56,&7� E-��
���� ������������ ������ "#=$ ���
�	� 1+ ����	 �������������
%� ���� ����� ��� �����	���������� �� �������� ����� ���	���	
������������ �������� ��	 �������� ����� ������� �� ���� ��
���������	 ���������������� ��� &�F� ,����������� &���
�
4��� "#*$� %���������7� 6������������ "#3$ ��	 %�7� 6�������
"D$ ��� ��� �������������������	 ������������ ������� ����	 ��
���������� 	������� ������������� ����� ����� ������� ���
������� ������������ ���� � ��� ���������� �������� ��� ����
��� ��� �������������� ����	� �� ����� �� �	���� ������������
��	� ��� ���������� �� ��� 	����� �� ������ ��������� &�
�/����� �� ��� ������ ���� �� ���� 2��	 �� 1����������7� ����
������� ,����������� ������ "#($ �� ����� � ����� �� ������
������ �������� �������
�� �� ��������� � ��� �� �������� ����
��������� ��	 	������� ������������ ����� � 	���������	
B����� +������ ,��� ��� �����	 ��������	 ���� ���� ���
������ ���� � 	���������	 B����� +����� ��� ��� � 	�<�����
������ ��� ������ ����� ���� ��� ���� �������� ����� ��	
���� ���� ����� �� ���� ����� �� �/�������� �����������
	��� ��	 �������� ������������� ���� ������� ��� ������
�� �������� �������
�� ���� ������� �� ���� ������ &������
	�<������ �� ���� ���� �������� 	��� ��� �����	�� ��������
�������� ����������	 ������� �� ����� �������� ����� ��
� ��
������� ������������ ��	 �������� ����������� �
�� ��������
�����

��� &8,�� ������ ":$ �� ������� �	���� ������������ ����
���� %� �� ����	 �� �� �������
� ��������������� �� �����
��	�� ������� ��	�� ���� �������� ����� ��������� ������
������� ���� �� ���� ���� ����� ��	�� �� �������� �������
���
& ������� ���� ���� �������� �� ����� ������������ �� ���
�������� &��� �������	 �� ��� ������ ��������	 ����� ���
�����
� ��������������� ��0����� ���� ��	�� �� �� ���������
���2����	 �� �������� ��� ������� �� ��� &8,�� �����
���� ������� ������� �����	� �����������
� ���������������
��� ���� 	� ��� ���
�	� ��� 	������ �� ��� ���� ���������
��� �� �Æ������� ��������	� ;� ���� ��� ���� ���������
��� �� 	��� ����
��� ��� ��������

+������� A������7� "#G$ ���
�/ ������������ �������� 	��������
� �����	 ��� ���������� ��	�� �� �� �	���� �������� ����
�����	 �� ����	 �� �����	�2���� ����������� ��	 ��0�����
�������� ����������	 ����������� �� �� �� ��� ������ ��������
��� �������� �������� 	�
����� '�� �������� �� 	�<����� ����
��� ���
������ �������	 ���������� �� ��� ����� ���� �� ���
�������� ��������� �� ��	�� ���� ��� ����	 �������� ����
���� ���� ��� ������� ����� �
��	��� ����� ������������
;� ����� ����� ����������� �� ���������� ��	� ��������
���� �� ��� �����/� �� � ����������� ����� &		���������� ���

205

�������	 �������� �� H�/����� ����� �� ��� ��� �� ���� 	���
������ ���2���������@ ����� 	���������	� ������� ����������	
�� � ������� ���	 �� ������ ����������	�

3. MOTIVATION AND ASSUMPTIONS
%� ���� ����������� �������� ������ �������� ��� �/�����	
�� �� 	������	 �� �� �	���� �������)��� ����	�����	 �
�� ��
����.� ;��� �	���� 	��������� ����
��� ��� ������ �����
������ ���	��� �� ���� �������� ��� �������� �� ���� �������
&� ��������	 ������� ����
��� ��� ���� ������������� ����
��� ��	�� ��� �/�����	 �� ���� ����� �������� ���������� %�
�� ��������� ��������� �� ��	�� �������� ������ ��	�� ����
��� ���������� �� 	���������� �������� ����� ���������� ���
������� �� ��� E-������ ������������ ������ "#=$ ����� ����
E-� ������ �� ���	 �� ��� �������� 	�� �� ������ ���� ����
��� ��	 ��� ���� �� ����� ��0��������� ;� ����� � �������

�������� ����� �� ���� �� 	�
���� � ������ ���� 	��� ���
��0���� 	����� ���� �� ����� ���� ������� �� ���� ��� �� ����
��� 	������	 �� �� �	���� ������� ��� ��� �����
� ��� ����
��
�� �� ������������ ��������� �� ���� ���� ����� ��	�� ����
������� ��	� ��������� ����������� ��	 ����� �����������
���� ����� ������� ��	�� �
�� �������� ���� �� ��������
���
�������� ����� ���������� ���� ������� ��� � ������ �����
�������� �� �	���� ����������� +��� ��� ������������ ����
������
� �� ��� ���	� ����������� ���	� �� �Æ������� �����
����� �
�� �������� ���� ������ ��� ������� �� ���
�	� +��
�������� 	�
���� �� ��� ����� ���	� ������������ �� �� ������
���� ������� ��� �������� �����/� ����������

3.1 Problem Statement
E�
�� � ������� �� ������ ��	�� ����� �. ���� � ����� �����
���� �� ��� ��	�� �� ����� �� ����� ������� ���������)��� ����
����.� ��	 �. ������ ��	�� ������ ��	�� ����� �� ���� �����
��� ���� ������� ��� 	������� ������� ���� ������ ��������
��� ��������� �� ��� ��������� ��	��)��� ��������.�

3.2 Ranging Technologies
��� ���� ���������� ���� �� ���� �� ��� ���������� �� ����
��	�� ��� ���������� ������� 	�������� ������� �������
��
��	 ����� ���������� ���� ���������� �� ��������	 ���	���
�
������� ������������� ����� ��� �� ����	 �� ���� �/����
��� �������� ��� �	��� ��	� �� ":$ �������� ���� �����
���������� 	������� ������������ ��� � (������ ����� ��	
:����������� ��������� ��� �	
����	 ������� ��� �����
�
������ ������ ��	 ������ ������������ 8�/����� ":G$ �	
���
����� ������� 	�
���� ����	 �� ��	�����	 ���������	 ����
� :G������ ����� ��	 G�(���������� ��������� %���������
"*$ ���� 	���� ��� ������ ��	 	�
���� ���� ���� ��
� ��� ����
������� ���������� &�� ����� 	�
���� ��� *GB8� ����������
��������
��� ��	 ��� ����	 �� ������������
�� �������������
�	��� �������� ��� ������������
�� ������� 1+ ��	 ���
�������� �������������� %� 8�/�����7� ������ ��� �������
�������� �� ���������� ���� ���� 0������ ���� �� ��� 	�
�����
A������� �� �������	 �� �����	��� ��� ���� ����� ��� ����
	�
��� �� ������	� ���� A���� ������� ������������
�� ��
�����	��� ���� ������� ��� ��������� �������	 ��	 ����������
	��������� E���	7� C,'� ��	����	 �������� ������� ����
��� ��� ���� 	���
��
��� �������� 	������� �������������
%� ���	��� ��
��������� ���� ������ ��� � 3G������ ������
1�������� "3$ ���
�	�� � 	������	 ���	� �� ���� ������� ,����
������� ������������ ��� ���� �������� 	������� ��������
����� �� ������ ������� ��� �%6B7� "##$ ����� ����� 2�	���

��
� �� �<����
� ����� �� 9G ������ ��	 # ���������� �����
�������

+�� ��	��� ������������ �� ���
���
� ��������� �� ��� �� ���

�� �� ���������� 	������� ������������ ������� �� �� �������
��������� ��� ���� ��	 ������
��� ��� ������ %� ��� 	�������
����������� �/��������� �� ��
� �/���������	 ��� �����
���� �� ���� *GB8� ���������� �����	������ ������� ��	 �����
���� 6������ �����	����� ��
� ������� 	����� �� 	������
���
����� �������� ��� �������� �� ��	�� ������� 6������ ������
	����� ���	��� � ������� ������������ ������� ��	 �������
�����	����� ��� � �����	����� �������� '�� ������� �����	���
��� ��
� � DG�	����� ���� ������ ��� ������� �����	�����
��
� � (DG�	����� ���������� ��
����� ��� ��� ������������
��	 #9G�	����� ���������� ��
����� ��� ��� �����
���� ;���
����� �����	����� ��� ����� ��� ���������� ��� �����
� ��
�<����
� ����� �� 3 ������� ���� G�3����������� ��������
���� ���������

3.3 Establishing and Merging Local Coordi-
nate Systems

��� ������� ��������� ������ ��	�� ��� �� �������	 ������ ��
������ ��������� �� �� ������������� ������������ � �����
����	����� ������� '�� �����	 ��� ������������ � ����	��
���� ������ �� �� 	����� ���� ��	�� ���� ��� ������� ��
�������� ���� 	������� �������)���� ���� ����� ���������	
�� ����� ����� 2�	���.� ����� ��	�� ��������� � ����� ����	��
���� ������ �� ����� �� 2���� #� %� ���� 2���� ��	�� �� �
��	 I ��� �0�����	 ���� ����� ����� 2�	���� ��� ��	�� ���
����������� ���� ���� ����� ��	 	���	� �� � ����� ����	��
���� ������� '�� �������� �� ���� ��	� � ������� ��� ������
���� ����	������)G� G.� ����� I ��� ����	������)�I� G. ��	
� ��� ����	������)�� ����� �� ����.� ���� ����� ����	��
���� ������� ��� �� ����������	 �� 	�<����� ������ ����	� ���
�������� ,���� ��� ��	�� ����	����� ��	 ����� ����� ����	��
���� ������� ����� ����	����� ������ ��������������� ����
����� ��� ��	�� �� � ���2�	 ����	����� ������� ���� ������
���� ��� ���
������ 	��� �� ��� 2��	 �� ������ �������� ��	
�� �� �/������	 �� 	����� �� "($� '�� 	��������� ������ �� ���
�� �������� ��	� ��������� ������ ���� ����	����� ��������

.

.

Γ

⇓

α .

������ �� 	
����
���� ����� ���������� ��
���

�1����� �� �� :G� ��� ���� �����
���� ��� ���� ��� ��� 	��
������� ����� �� ����	 �������� ��������� �<���� ��	 ��������
����� �����������

206

3.4 Sensor Network Viewpoint on Localiza-
tion

%� � ������ ������� �������� ������������ ����������� ����
���� ����� �� �����
� � ������ ������� ����� ���� � �����
������� ���� ���� ������ ��	�
���� ��� ����������� ������
��	�� �� ������	 �������� ��������� ������� �������� ��������
���� 	��� ���
������ ���
���� +����������� ��
��� ����
��� �������� �� ����� �������� �� ������� ���� ��� �������
�������
� ��	 �������� ������
�� +��� ���� ���������
� ����
��� ��	�� ������� ����� ����	������� ������ ����� ���������
���	 ��	 ���� ��� ��� ��������� �� ������� ������� �����
���������� ;� �����	�� ������������ �� ��� �� ��� ����� �����
	������� ��������� �� ��� ������� ���� ����� ����� 	����� ���
������� ������ �� ������� ���������� ,���� ��� 	����� ��� ����
���� ��������� ��� ��0����	 ������	�� �� �������� �� ������	
�� ������� ����� ���� �� ��������� ��� ������� �� �
����� ����
��� ��������� ����������� ��	 ������������ ������� ��
�����
��	 ������� ������������

4. SOLUTION OUTLINE
%� �� �������� ���� ��� ��	� ������������ ������� �� �������
�� E-� "#:$� %� ����� �� ���� ������� �������	 �� �������
��	�� ��� �������� �� ��� ������� �� ��������	 �� �����
������ ��� ����	���� ������� ��� �������	 ��	 ��������	
	�������� ������� ���� ������ ��	 ��� ������� ��	�� %�
�� �	���� ������� ����� ��� ������ ��������� ���� ���� ���
����� ��	� ���� ��
� �� ����� ����� ������� �� ���������� �
	�<����� �����	 ��� ���������� ��	� ��������� ���	� �� ��
������	� %� ���� ����� �� �/���	 ���� ������ ������ ��� ����
������������ ��������� ��������	 �� E-� �� � �������� ���
�������� ���� ��������� ������� ��	�� ���� ��� ��� 	�������
��������	 �� � ��	� ���� ����� �������� �� ����������� ����
����� �������	���� ��	�� ���� ������� ��������� �������	
������� ������ ��	 ��� ������� �� ���� ���� ��� ?������ ���
������ ����� ���������� '�� �� ��� ���� ���������� �� ����
������� �� �� ���
��� ����� ������������ �� ��� �������� ��
���
��� ���� �� ��� ����� �0����� ���������� �� �������� ���
��� ������� ��	� ��������� ��������������� %� ��� ��������
��� ������� ��	�� ����������� �� ��� �� � ���������� �����
�������� ������� ���� ��� ���� �� ���
�	 ������ �� � �������
��	� �� �� � ����� 	���������	 �������

��� ����� ��������������� ����� ����� �� ����� ���� ������
	������	 �� 2���� :� A����� ��� 2��� ������ ��� ��	�� ����
� ���� ����������	 �� �
�� ����������	 ���2�������� �� ���
������ ��	 �������� ��� ����������� ��������)������� 3�#.�
���� ���2�������� ����� � ������ �� �� ����� � ����������
�0������� ��	 � �������
�������� �� �� 	��������	� 6���
�������� �������� ���� ������ ���� ���� ������� ������
�� ��� ����������� ������� ��� � ���0�� �������� ���������
��� ��	�� ���� 	� ��� ���� ��� �������� ��� �����������
�������� ������ ����������� �� ���� ���2��������� ��� �����
���� ��������� ��� ���� ��	�� ��� 	��������	 ����� �� �� ���
�������� %� ��� �����	 ������ ���� ������� ��	� ��������
�� ������� �������� �� ��� �������� ����	 �� ��� ����� ������
��������� ��	 ��� ��������	� 	������� ������������� ����
�� 	�������	 �� ������� 3�:� ��� ������� ��������� �������	
�� ���� ����� ��� ���	 �� ���������� ��� B����� +������ ��
��� ����	 ������ ��� ����	 ����� �������� � B����� +�����
�� ��2�� ��� ������� �������� ��������� ��	 ������� ��� 2�
��� �������� �� ��� ��	� ���������)������� D.� +������� ���
������ ����� ���� ��� �������	 ��	� ��������� �� ��2�� ���

Find nodes with unique
position solutions

Compute Initial Position Estimates
For all nodes

Compute location estimates

Compute estimate
at each node

Communicate

Criteria met?

YES

NO

Communicate results
to central point

Transmit estimates back
to each unknown node

Refine estimates of
under-constrained node

Done

Done

Centralized Computation Distributed Computation

PHASE 1 PHASE 2

PHASE 3 PHASE 3

������ �� �������� 	
�������� ���
�

�������� ��������� �� ��	�� ���� ����	 ��� ����������� �� ���
����������� ���� ���2�������� �� ��� 2��� ������

��� 2��� ��	 �����	 ������ ��� ��	����	��� ���� ���� �����
�� �� ������ ������� ���� ��� ���� ����� �� ��������� -�����
����� ��	 ���� ��� ����� �� ���� �� ��� 2��� ��� ������ ���
��������	 ��	 ���� ��� ��������� �� 	�<����� ������ 	��
���	��� �� ��� 	����	� �� ��� ������������ %� �����������
�� 	��� �� � ������� �����)������ � ������� �������� ���
��� ����� �������� �� � ����� ������� ���	.� ��� ������� ����
��������� ���� ��� ������� ��	�� �����
� ����� ��������
���������� %� ��� 	���������	 ����������� ���� �� ���	� ����
��� ��������� ����������� 	����	� �� ��� 	����	� �� ���
������������ %� ��� ����������� ��0����� ?��� �� ��	�������
�� ���/������ ��� ������������ ������� ��� ���� ������� ���
�����	 ����� ��	 ���������� %� ���� �������� ������������
�� ��0����	 ��� 	���������	 ����������� ���� �������� �����
��0����	 ��������� �� �����
�	�

5. INITIAL CONFIGURATION
4����� ���������� �� ���
� �� ������������ ������� ����� �
B����� +�����)� ���	���� 	������ �����	 ��� �������0�����.�
��� ���� ��� �� ���
��� ��� �������� �������� ��� �����@ #.
��� ����� ������� ��� ��
� �������� �������� ��������� ��	
:. ��� ������������ ������� ��� ���
���� �� � ����� �����
���� �� ������� �������� ��������� ������������� ��� ����
������ ���� ��� ����� ���2�������� �� ��� B����� +����� ���
� ���0�� ��������� ��������� ��� B����� +����� ��� ����
���� � ����� ������
�� ���� ��� �� ���� ������� �� ��������
���� �� ����������� ������� ��� �� �� ��� ����� �������� ��
� ��	�7� ��������� %� �		����� �� ����� �� ��� B����� +�����
�� ��� �������� ����������	� �� ��� ���
���� �� ����� ������
���� � ���	 ��� �� ������� �������� ��������� �� ���������� %�
���� ������� �� 	������� ��� ��� �������� �
��	� ����� ���
��������� %� ��	�� �� ������ ���� ��� �������� �� ���0��� ��
�����	��� ��� �������� �� ����������� ������ �� �
��	 ����

������ �� ����� ������ �� ������ � ��� �� ������� ���������
���� �� ����� �� ��� 2��� ��������� ����� � ������ �����������
�������������

207

5.1 Phase 1: Computation Subtrees
& ����������� ������� ����������� � ���2�������� �� ���
������ ��	 ������� ��� ����� ��� �������� �� ��� ��������
��������� �� ��� �������� ��� �� ���0���� 	��������	� ����
�� ������� �����
�	 �� ��������� � ���� 	��������	 �� �������
���� �
���	��������	 ��� �� �0������� � �
�������� �� �� ���
������	 ��	 �� ����� � �0�������� 4����� ���������� �� ���
�
����� �0�������� �� 2��� 	�������� � ��� �� ��0��������� ����
������ ��� �������� �� ��� ����� �� ������� �� ���0��� 6���
�������� �������� ��
� ������� 	�������� �������� ���� ����
������ �������� ���� �� 	������ ��� 	���������	 ��������
���� ��	�� �� ������� D�:� �� 	�������� ��� ��0��������� ���
�������� ���0������ �� 	�
���� ��� 	��������� �� ��
������
��� ��0��������� �� ��� ������ ��� ���������������� ,���� ���
�� ������� ����� ��0��������� �� ��
�� ��� �������� �����

5.1.1 One-Hop Multilateration Requirements
%� ��� ������ ��� ����� �� 2���� (�� ��� ����� ��0��������
��� ��� ������� ��	� �� ��
� � ���0�� �������� �� � :A
����� �� ���� �� �� ������ ����� �� �� ����� ����� �������� %�
��� ������� ��� �� � �������� ����� ��� ��	� ���2�������� ��
���������� ��	 ����� �� ���� ���� ��� �������� ���������

1
2

3

4

0

1

2

3 4

5

6

(a) (b)

3 4

1

2

4

3

1

2

5

(c) (d)

������ �� �� ������� ��������������� �!"�����
��������������� �� ��������� ��
� �� 	��� ���
#��"� ��
 ��� ����������� ��$������

5.1.2 Two-Hop Multilateration Requirements
5���� ��� ������� ��������������� ��0��������� �� � ��������
������ �� ��������� ��� ���������	��� ��� �� ��0��������� ���
� ������� ���������������� & ������� ��������������� ����
������� ��� ���� ����� ��� ������� ��� ��� ������ 	�������
��������	 �� ��� ��	� ��� ���� ��� ������ � ������� ��	���
���� ��� ������� ��	�� %� ���� ���������� ��� �� ���� ���
����� ��	�� ��� ������� ��� ������ �������� ����������� ��	
��� �������	���� 	������� ������������ ������� �������
��
��	 ��� ������� �� ?������ �������� ����� ���������� ,��� ���
������� ����� ���� ������� ��	� ���	� �� �� ��������	 ��
�� ����� ����� ��	��� ��� ����� ��	�� ��� ��� ��0����	 �� ��
�������� %�����	� ������� ��	�� ���	 �� 	�������� �����
�� ����� ��������� ��
� ���� ��� �������� �������� ��������
��	 ��� ���� �� ��������� ������ �� 	�������� �� ����� ���
������ �������� �� ���0��� +��� ���� ���������
�� �� ������
���� � ��	� �������� �� �������
��� ���0�� �� �� ��� �� �����
����� ��������� ���� ��� ������ ������� �� ����� ��������� ���
�������
��� ���0��� +����� (� ����������� ��� ���� ����� �����
C�	�� (��	 * ��� ������� ��	 ���� ��� ���� ��������	
�� ����� ��	��� C��� ���� ���� ��� ���������
� �� ��	� (�
��� �� ��� ����� ���������� �� �� �������� ��	� *� C�	� *
����
��� ��� ��� ���� �������� ����� �� ������� 3 ��	 D� %�
�� ������ ���� ��	� (��� � ���0�� �������� ��������� ����
��	� * ���� ��� � ���0�� �������� ��������� %� ����
��� ��	�
* ��� � ���0�� �������� ��������� ���� ��	� (�� ���� ����
��������
� ������� �� �� ��������	 �� (�����������
� ��	��
� #�: ��	 *� ���� ���	����� �� ��������� ��� ��� ��Æ�����

�� ��������� ���� ����� �� ���� ��� �������� ��	� ��������
��������� ��� ��������� ���������� ���� ���� ��� ���
�
��0�������� ��� ����	 ���� ���� ��� �������� �������� �����
�����

��������� #� �� ���� � ��
��� ����
��� ���
	
�� �����
	
���
	
� �������� 	��	 �� ������� ���� �� ������	�� 	�
�	 ����	 	��� ����� 	��	 ���� ��
��� ����
��� ���
	
����

��� 2�� ��������� ���� ������� ���� ��� ���	������ �� ���
������ ��� ����� � ��� ��	�� ���� �������
��� ���0�� �����
����� ���	 �� ���������� ��� �� ������� �����	 ��� ��� �� �
�������� ����� %� ���� ��� �� � �������� ����� ���� ��� �������
��	� ���� ��
� ��� �������� ��������� �� ��� �������� �� ���
�������� �������� �� ��� ���0���

��������� :� �	
� �������� �� �� ������� ���� 	� ���
�	 ����	 ��� ������� ��
�	 	��	
� ��	 ����
��� �
	� 	�� ��	
��
	� ������� ��
�	��

&������� ��� ��������� �� ��� ��������� ������ ��� ��� ������
��� ��� ���� ��� ���� ���	����� ����� ����� ������������� %�
2���� *� �������� ���� ��	�� &�6 ��	 A ��� ����� �� ��
�
���0�� ���������� ��	� 4 ����� �� ��������� �� ��� �������� ���
������ �� ���0��� �� 	� �� ��	� 4 �������� ��� ������ &46�
64A ��	 &4A� 5���� ��� ����� &4A� ��	� 4 ��� ������
���� ��� 	������� J&AJ� %� ��� �������	 	������� &A ��
�0��� �� ��� ��� �� 	�������� &6 ��	 6A ���� ��� ��	��
��� ��������� � ����� ��	� 4 	���	�� ���� ��� �������� �� ���
���0���

A

B

C

D

⋅⋅
−−=. −

||||2

||||||
cos

222
1

ACAB

BCABAC
ABC

⋅⋅
−−=. −

||||2

||||||
cos

222
1

BDBC

BDBCCD
CBD

������ %� &�������� ��������� ���'��������

&������ ���� �� ����� ���� ��� ����� �������� ��������
�� ����� �� 2���� (�� C�	�� (��	 * ���� ��
� (�����
�� ��	�� ���� �������
��� ���0�� ��������� ��� ��� �����
�� ��������� ����� ��� ��� ��	�� ��� �� ������	 �������
���
�������� �� ��� ����������� ������	 �� ��� ��������	�
	������� ������������� �� �
��	 ���� ��������� ����� ���
����� ������� ��� �� ������	 �
�� ��� ��
�� ������)��	��
# ��	 : �� ���� �/�����. �� ��� �� �		������� �����������

��������� (� �� ���� ��
 �� ������� ����� 	��	 ���
	�� �
�� 	� ���� �	�� �� � ����	�
�	�
	
� �������� 	��	

�8��� �� ������� ��� ��� ���� 7�0���7 ��� ������� ��	 ��������
��� �� ��� �/���������� �� �������� �� ���� ���	 �� �����	��
��� ����� �������	 �� ��� 	������� ����������� �������

208

���� ���� ��� �	 ����	 ��� �
�� 	��	 ������	� 	� � �
����	
���� ��� 	�� ����� ���� �� �������� �� 	�� �	�� �����

��� ������� �� 2���� (�� �� �/����� ���2�������� ����
�����2�� ���� ��������� 4��� ������� ��	�� (��	 * ��
� ��
����� ��� ��	����	��� ���������� C�	� * ��� ������ # ��	
��	� (��� ������ :� ��� ���
� ����� ���	������ ��� ���
	�
�	����� ��������� ��� ?������ ��Æ����� �� ��������� ����
�� �� ������� ��	� �� ������ ��� ���� ���� �� ����� �����
������� ���� ��� ������� ��� � ������ �������� �������� ���
�������

5.1.3 N-Hop Multilateration Requirements
�� 	�������� �� ��	�� ������	 ������ � ���� ���� ��� ����
���� ��
� ���0�� ��������� �� ��� � ������� ��� �� �������� ��
�� ��� ������ ��� ����� �������� ���� ��� ������� ��	� ��
���� �� �� ��� �� ����� ����� ��������� ���� �������
��� ���0��
���������� %� ��� ��	� ��� ����� ��������� ���� 	� ��� ���
���	� ���� �� ����� �������� �� ���0��� ���� � �������
� ����
�� �/�����	 �� ���� �������� �� 	�������� �� ��� �������� ��
���0��� �� ���� ��� ��0��������� �� ���	����� (���� ��	�
���	 �� �� ��	����	��� ��������� �� �����	� ;� ����� ��
����� ��	�� �� ���	 ��	��� ���� ���
���� ����� ���� ����
��0���� �������
� ����� �� ��� ���� ��	� �� �� ��	����	���
���������� &� �
��� ����� ���� ��	� ������ �� ��� �������� ���
���	����� : ��� ���� ���� ���� �������
� ��������� �� ��
��
�� 2���� 3� ��� ��������� ��������� ������ �� ��� �������
��	� ��	 ���������� � ����������� ������� �� ���
������ ���
������� �� � 	���� 2��� ������ �������� ��� ��� ���������
������� ��0���������� +�� ����������
� ��������� �� ���
�	�
��� ������
������ �� ��� ��������� �� &� ���� ��	� ��� �����
����� ������� ���� ��� ������ ��� � �������
��� ���0�� �����
���� ��	� ����� �� 2�	 ��� ������� ��� ��	� ���������
�����	
��� � �������
��� ���0�� ��������� ��� ��������� ����������
���� � ����������� ������� �� �����	� %� ��� 	���������	

������ �� ��� ���������� ���� ������� ��	� ���� ���	� ��
���� ������� �� �� � ���� �� ��� ����������� �������� ��	
����� �� ��� ��������� ��� ���� �� ��� ���� �������� 5����
���� ������������ ��� ��	� �� ���	� �� ������	 �� � ���� ��
����� ��� ����	 ������ �������� ��2�������

5.2 Phase 2: Computing Initial Estimates
4����� � B����� +����� ��� �� ������	 �� ���	� �� �� ��������
����������	� �� ���
��� ��� 2���� ���� ���
������ �� � �����
�������� �� ����� � ������ ����������� ������������ ����	
�� ��� �������� ������� ������������ ����� �� ��� �������
��	 ��� ������	�� �� ������ ��������� �� ������� �� �������
�������� �������� ��� ���� ������� ��	�� ��� ������� �����
����� ��� �������	 �� �������� ��� 	������� ������������
�� ����������� �� ��� / ��	 � ����	������ �� ��� �������
��	��� +����� D ����� ��� ��� 	������� ����������� ����
��� ������� � ��	 � ��� �� ���	 �� ������ ��� / ����	�����
����	� ��� ��� ������� ��	� 6� %� ��� 	������� ������� ��
������� ��	 ��� ������ � �� � ���� ��� � ����	������ ��
��	� 6 ��� ����	�	 �� � �� ��� ���� ��	 �� ��� ����� �� ��� �
����	����� �� ������ �� ���� ��	 ��K�� ���������� ������
� ����� �� ��� ���� ���� ���� �� ����	� ��� ����	������

�%� �������� �� ����� � 	���������	 ��������� ���� ��� ����
����� �������� ������ ��	 ��� ������ � ����������� ���� �� �
����� 	���������	 ������ ����� �� ���� �����	����� ��� :����
�����������	 �� ���� ��	�� ���� ��������� �� ������	 	��
�� ����� ������������

(����
� ��	� �	� ��	� �	 �� ��� ������ ��	 �
������� H�� ���� �����2�� �� ��� ������ ��	� ��
��� ��	� ���� ��������	 ��� ����������� ���� �������
������� �� ������� ���� � ���� �� �	��� ����
���� �� ��� ����������� �������� ����������
�� ������� C5,,
JJJJJJJJJJJJJJJJJJJJJ
	
�� ��5��0��)�� ������� ���������.
����
�$ �� ��� �� ��� ���������

���� @LG M � @L G ���
��
� ���� @L #M � @L # ���
$�� ���� ������ �������� � ����

�$ � �� �����	 ����
����� �� �� ��� ������
�$ � �� ��� ��� ���� ������ ��������
�� ��� ��	� ���� �����	 �� ����
���� � ��
�����	 �� �M
	�������� ��� ��� ��	� ���� ���
������
�����	 �M @L K #

���
��
� ����

�$ � � : ����
� @L �K #M @L K #M

���
���

���
��
� ����
���� 	
�� � ����)�� �.M @L K #
���� � ��
�����	 �� �

���
���
$�� ���� ������� �����	 �������� � ����

�$ � � : ����
���� 	
�� � ����)�� �.
� @L �K # M @L K #

���
�$ L (������ ���� 	
��

���
$�� ���� ������� �������	 �������� �

�$)���� 	
��� @L ��5��0��)�� �� ��	��.. ��� C5,,
���� 	
�� � ����)���.
���� 	
�� � ���� 	
���
 @L K #
�� L (������ ���� 	
��

���
���
������ C5,,
���

������)� ������� �����������
�����

209

a

a

a

b+c

b

c

b+c

C

B

A

x coordinate bounds for node C:

[])(cbxB ++[]axA − tofrom

������ *� (������ 	
������

Beacons

Unknowns

Initial estimates

������ +� (������ �
������
 �,�� �������� ���

�� � ������� ��� ������ �� ��� ������� ������ ���� �� ��
�K �� �� ��� ����	� ��� �7� /�����	������ ���� ������� �� �
��� ���)�K�. ��	 ��K)�K�.� 4� ������� ���� �����������
� ��� 	�������� ���� ��� � ����	����� ����	� ���� �������
�� ������� � ��	 � ��� �� K)�K �. ��	 ����� ���� �����
����� ������� ��� �������� ���� ���	 ��	� ����	 ���� ��	 ���
�������� ����� ���	 ��	� ����	 ���� ���� ������� ��� ����
�	�� �� ������	 �� ��� � ����	������� ��� ��	� ���� ����
����� ��� ����	� �� ��� � ��	 � ����	������� �� ���������
� ����	��� ��/ �� ��� ������ ����� ��� ��	� ����� �� ���
���� ���� ����	��� ��/� ��� ��������� �� ��� ��� ������� ���
������	�	 �� ��� �������� ����� � ������� ������ �����
���� ������	��� �� ��� ���� �	�� �� 	�������
����� �������
��� ����� ��� �������	 	�������� ������	 �� ���� �� ��������
��� ������� �������� �������� �� � ��	� �� ����� �� �� �� ���
������ �� ��� ����	��� ��/� ;��� ����� ����������� ���
�������	 ���� ��� ���	������ ��� �������� ���0������� ����
���
�	� � ���	 ��� �� ������� ��������� ��� ��� B����� +�����
���	 �� ��� ��/� ������ ��� ��������� ������� ��������� ��� �
#G ��	� ������� ���� (������� �� ����� �� 2���� =� '��
��������� �� ���� �����	 �� ���� ��� 0������ �� ��� �������
��������� ��<��� ���� ��� �������������� �������� �� ���
���
�/� ��� ������� ��	�� ���� ��� ������ � ���
�/ ����
������	 �� ��� ������� ��� ���	��� ���	 ������� ����������
%� ���� ���2���������� ����� ���� �� ��� ������� ��	��
��� �����	� ��� ���
�/ ���� ��� ������� ��������� ��� ����� ����
2������ %� ��� �/��������� ���� ����� �������� �� ���������
������ ���� ������� �������	 ��� ������� ��	���

6. PHASE 3: POSITION REFINEMENT
%� ��� ����	 ������ ��� ������� ��	� ��������� ��� ��2��	�
����� �������0����� ����������� E�
�� ���� ��� ������� ����
��������� ��� ����� ���� �����	 ���� ��
� ��� ������� �����

���� ��������� �� ��� �������0���� ������ %� ��� ���������
������ �� 	���	�	 �� ��� � B����� +������ ����� �� � ������
��
� �������� ��� �������0����� ����������� & B����� +�����
��� ������ ������ ������� �� ��� H�/������� ��	 �/���	�����
���� & B����� +����� ���
�	�� � �������
� �������� �� �����
�0����� ����������� ��� ���� ���������� �� ��� B����� +���
��� ���� ��	� �� �� ��������
� ������ ��� ��� ������� �� ����
����������� ���� �������� ������� ��	������� ��	 ���� ����
	������ ����	 �� ��� ���
���� ������ ����� ��	 � ������
��	��� ����� ���������� ��� ������ ��� ������������� ������
��� ��	 ��� ����� ������� ����� �� ��� B����� +����� �� �

������� ��������� �� ��� ��������������� ��� ����� �����
���� �� ��� B����� +����� ���� ����� �� �� ��������
� ������
��� ��� ����������� �� ���� �� ��� ���� ����� ��� ��	�� �����
��� ������������ ������� �� ��������� &� 	�������	 �� �������
=�*� ��� �/���������� ��	� �� �0�����	 ���� ������� ���� ���
����� ��� ��	� �� 	��	 ��������� ���� ��� ��	�7� ��������
�������� �� ������

��� �������� ��2������ ����� ��� ��� �������� ��������
������ ����������	 ��	 	���������	� ��� 2��� ��� ��������
���� ������� ��������� �� � ������ �����)��� � ������� ��	�
� ������� ������� ������� ���	.� ��� �����	 �� � 	���������	
�����/������� �� ��� ������� �������������� �� ����� ����
��	� �������
��� ��2��� ��� �������� ���� ����� �����������
��	 ��������������

6.1 Computing at a Central Node
5���� ��� ����������� �������� ��	 ��� ������� �������� �����
������ �� ��� ������� ��� ������� ��	� ��������� �� � �������
������ ��� �	��� �� ��� ����������� ������� ��
� � �����
	��������	 �� �
���	��������	 ��� �� �0�������� ����� ���
�� ���
�	 ����� ���������� ������������� ��� ���������� ��
�0������� ��� ��� ������� �� 2���� (� �� ����� �� �0�������
�� &� �� ��� ��� ��� ����� ��� ��?����
� �� �� ��������
��� ����	��� ������� ��� �������	 	�������� ������� ���
��	�� ��	 ��� �������	 ���������� ����� ��� ��� ������ ��
��� ���������� ��������

���� L ���� �
�

)�� � ���.� K)�� � ���.�

���� L ���� �
�

)��� � ��.� K)��� � ��.�

���� L ���� �
�
)��� � ���.� K)��� � ���.�

���� L ���� �
�

)��� � ��.� K)��� K ��.�

���� L ���� �
�

)��� � ��.� K)��� � ��.�

)#.

��� ���� 0��������� ��������� ��� �������	 	�������� ���
����� ��� ��	�� ��	 ��� 0��������� ��	�� ��� �0���� ����
��	����� ��� ��������	 	��������� ���� ��������� ��� ����	���
������� ��� �������	 ��	 ��������	 0���������� ��� ���
?����
� �������� �� : �� �� �������� ��� ���� �0���� �����
�
�� ��� �0�������� ��� 	�<������ �� ���� ���� ��� ��� ���
����������� �� ���� �� ���� �������� ��������������� �����
��� ���� ���	�

�)��� ��� ��� ��. L �
�
�

�
�
���):.

���� ���2/ � �� ����� �� �� � 	������ ��������	 ����	�������
�� ������	 �� ����� ����	������

210

��� �������� �� ����� �0������� ����� � B����� +����� ��
	�������	 �� ��� ��������� �����������

6.1.1 Kalman Filter Implementation
& B����� +����� �������� �� ��� ������� � ���� ��	��� �����
��	 � ����������� ��	��� ������ ��� ������ �� � ���	���
���� �� ����)�0������� (� ��	 *.� ���� ���� ���	������ N���
�� ����	 �� � ����� ��	�� �� ��� ������ ����
���� ������
�����	 �� �����/ �� �� �� � ���� ���� �������� ���	��

������� ��	 � �� ��� ����� ��
������� �����/ ��� ���� ����
	��
�������� ��� �� ��� ������� �������� �� ��� ����� ��
����
���� ��	 � �� ��� ������� ������ ��� ������ �� �� ��	���
�� ��� ������� ���� �������� ����	 �� � ����������� ����
��� ?��� �������	� � ���������� ��� B����� +����� ����
��	 �� ���
�� � ������ �� ��� ����	��� �� ��� 2����� ���
����	��� �� ��� 	�<������ ������� ��� ������������)������
�����	 �� ��. ��	 ��� ���	����	 ����������� �N��� � N�� ���
	������� ������� ��	��� ����	 �� ��� ������� �������� �����
����� ����/ � �� ��� O������� �� N�� ���� ������� �� ���
������� ���������) ����	 �� N��� . �� ��� ���������� ����/ � ��
��� ����������� ����� ��
������� �����/� ���� �������� ���
����� ����� ��
������� �� ��� 	������� ����������� ������
)��� ����	 �� ��� ���������������� �� ��� ���������� ������
�� ������ ����� �������� ����� ���� ����	��	 	�
������ L
:G ��.� N�� �� ��� ��� �������� �������	 ����� ��� ���	���
���� ��	 ����������� ��� �������	� ���� ��� ���	������
����������� ��� � ��� ����� ��
������� �����/ � � ����/
� ����	� ��� ��� �	������ �����/� +�� � ���	 �����	������
	��������� �� B����� +������ �� ����� ��� ���	�� �� "#9$ ��	
��� � ���� ���	���� 	��������� �� ��������	 "#>$�

+�� ��� �������� �� ��� ����� ��������������� �������
�� ��
������ ���� ��� ������� �� ������� ����� ��� ��������� ��
��� ��	��� 	� ��� ������ �� ����� ��� ���� ��	��� ����� ��
��� ���	� %� ����� ��� ������ �� ��� B����� +����� ����	 ��
��� ���� �� ��� ������ �� �������
� ����� �0����� "#3$� 4���	
�� ���� �� ����� ��� 	��������� �� ��� �����	 ���� �� ���
B����� +������ ��� ����������� ��	��� ������

N�� L �N���� K���)(.

��
� L ������

� K�)*.

� L ��
�

�
�)���

�

�
� K�.��)3.

N�� L ��)�� ��N .��)D.

�� L)� ����.���)=.

�� �������� ��� ������� ���������� ��� ��������� ������	�
�� �������@

#� ��� ���
����� �� ��� ������� ��������� �������	 �� ����
���� 3�:

:� �
������ �0������� 3� D ��	 = � ��� ����������� ���
	��� �����

(� �
������ ��� ���
������� ���������
�

)N��.
� �

�
N���
��
�

P ����� P �� ���� ���	�2��	 ���������)G�G# �� ���
�/���������.� %� ��� ��������� �� ��� ���� ��� �����
����� ���������� ��	 ��� ��� ��� �������� ����������
'���������

*� ��� ��� ���	������ N��� �� ��� ��� �������� N�� ��	
������� ���� ���� :�

��� ���� P �� ���	 �� �� ��	������ �� ��� ���	���� �� ���
B����� +����� ��	 ����� ��� ��� ��� ������� �� ���� ����

�������� +�� ����������
� �������� �� ���
�	� ��� �����
�� ��� B����� +����� �� ����� �� (�� ��� ������� ���������
)	�����	 �� �� ��	 ��. ��� �����	 ��
������ N��� � �� N��� L
"���� ���� ���� ���$� ��� ������� ������������ ��� �����	 ��

����� ��� �� L "����� ����� ����� ����� ����$� ������ N�� ����
����� ��� ������� 	�������� ����	 �� ��� ������� ���������

N��� L

�
�����

�
)�� � ���.� K)�� � ���.��
)��� � ��.� K)��� � ��.��
)��� � ���.� K)��� � ���.��
)��� � ��.� K)��� � ��.��
)��� � ��.� K)��� � ��.�

	

�

����/ � �� ��� ?������� �� N�� ���� ������� �� N��� �

� L

�
������

G G ���	��
�
���

���	��
�
����

	�����
�
����

	���	��
�
����

G G
	���	��
�
����

	���	��
�
����

	���	��
�
����

	���	��
��
�����

	�����
�
����

	�����
�
����

G G
	�����
�
����

	�����
�
����

G G

	

�

��� ���
� ������������ ����� ��� ��� �����/ ���� ��	 ������
0������ ��� ������ �� ����������� ��������� ���� ��� ����
��� �� ��	��� ���� �	�� �� ��� �����������
� ������� ����
�������� ��� ����� �� ��� ����������� �����/ ��� %� �����/
�� ��� ������ �� ������� ��	�� 	��������� ��� ������
�� ������� ��	 ��� ������ �� �	��� 	��������� ��� ����
��� �� ����� ���� �������������� �	�� �		� ��� ������� ��
��� ��� ��	 ���� ��������������� �	�� �		� ���� ��������
��� ����� ��
������� �������� ��� ��	 �� ��� �0���� ������
��� ����� ���� 	����	� �� ��� ������ �� ������� ��	�� ��	
��� ����������� ����� �����/ � �� � �0���� �����/ ��	 ��
���� 	��������	 �� ��� ������ �� �	��� �� ��� �����������
�
�������� ����� ������� �� �����/ ����� 	����������� ��������
��� ������ �� ����������� ���� ��� �� �� ��������	� +���
��������� ���� ��� ���������� �/��������� �� ����	 ����
���� ��� B����� +����� ��� ����
�������� �� ��������� ��
����� ���� ���������� �� ���
����� 5������������� ����� ���
���������� ������� �� �� �������
� ������� �� ������ 0�������
��� ������ �� ����������� ��0����	 ��� ��� 2���� �� ����

���� ������������� %�����	� �� �
������ ���� ����������� ��
��� ����������� �� ��������� ��� ������ �� +,'-� &��
,&4 �������� 	 ����� ��� B����� +����� ���
������ ����
	C��� ���� ��� +,'-� ������� �������	 ���� &�,&4

211

	���������� ���� ����� ���� �������� ��	� ��������� ��� ��
��������	 ���������� ����� ���� �����	� ���� �����������
������ �� ��������	 ����� � ��� ���� ��������������� �
����
���� �� ��� ������ ��	��� �� ���������� ���� ���� �� ��������
����� �� ��
� 	�
�����	 � 	���������	 �����/������� �� ����
�����	 � 	���������	 ����� ����������������

6.2 Computing at Every Node
%� ��� 	���������	
������� �� ��� ���������� ����������� ��
��������� 	���������	 ������ ��� ������� ��	 ���� �������
��	� �� ����������� ��� ��������� ��� ��� ��������� ����
�� �����
�	 �� ���������� ����� ����������� ��	 ������
�������� ���� ��� ����������� ��	��� ���� �	�� �� �����
� 	�����������	 B����� +����� �� 	���������	 �����������
������ ��	�� �� ��� ���� A������ ;���� ��������	 � 	��
����������	 B����� +����� �� "::$� 1���������� "#($ �� ����
�������� � 	���������	 B����� +����� �� ��� ���������� ������
������� ������� ��� ��
������ �� ��� ������ ���� ����� ��
	�<����� ���� ��� ���
���� ���������� ���@

� ��� B����� +����� �/������ �� ��� �����/� �� � ����
�������� �������� &� �� ���� 	������� �� ���� ��������
���� ������� �
��� ������� ��	� �� ������ ��� ������
������� �������� �������� ��������

� ;� ��� �� �����/������� �� ��� B����� +����� ������	
�� ��� ���� ���� �� ��	�� �� ������
� ����������� ��	
�� ���
�	� � ����������� ���������� �� ����������	
��
	���������	 �� ����� �� ����������� �
�����	� ���� ��
������� ��� ���
�������� �� ��� �������� ����� �� ����
�� ��� ���� �� �������������������	 	�
�����

� ��� ����������� �� ������	 �
�� � �������� �������
���� �� �� ���������� ������	 ��� �������� �� �	���� ����
������ �� ����� ��� ���������� ������ �� � �������0������
������������� �����	�

��� ��	������� ��������� �� ��� 	���������	 ������ �� ����
����� ��� ���������� �� ������ ��� ��	 ���� ���� ��	� ����	�
��� ����������� ���� �������� �� �������� �� ��� ���������
����� ���� ������� ��	��� ��� ��� 	������� ��������	 ��
�������� ���� ��� ��� ������� ���������)�������	 �� �������
3�:. �� ����� ��������� �� ��� ��������� ������ ��� ����������
����� ���������� &� ���� �� �� ������� �������� � ���
��������� �� ����	����� ���� �������� �� ��� ���������� ��	
��� ��������� ��� �� �� ��	��� ����� ��� �������� ����������
���� ����������� �� �������	 ���� ��	� �� ��	� ������ ���
������� ����� ��� ��� ��	�� ����� ��� ���������2�	 ���������

P�

��
)N��.

� �
�
N���
��
� P

� +����� 9 �� � ��������� ������

��������� �� ��� ����������� �������� +���� ��	� * ��������
��� �������� �������� ����� ������� # ��	 3 ��	 ��	� (��
����������� '��� ��	� * ����	����� ��� ��	���� ��	� (���
�������� ��� ��� �������� ����� ������� : ��	 3 ��	 ���
��� �������� �����
�	 ���� ��	� *� C�	� (���� ����	�����
��� ��� �������� ��	 ��	� * ���� ���� �� ������� � ���
�������� ���� �� ���� �������� ���� ��� ���
���� ���������

�� ���	 ��� ������
� ���������� �� ��� ����������� ���� ���
����� ��� ����������	 ��	 	���������	 �������� %� ��� ������
��������������� ��� B����� +������ ��� ����������	 �� 6
��	 ���� �/����� �� ��� ��	� ����������

4

3

1

2

5

Uncertainty of estimate
after first iteration

Uncertainty of estimate
after second iteration

Iteration 1

Iteration 2

������ -� (������ �
������
 �,�� �������� ���

%� ���� ������� ������	� �����������	� ���� ��� ��	�� ����
���
���� �� ����� ������� ��	 ��������� ��������� ���� ��
���	���	� %������ � ����������� ������� ���� ���� ���
����� ��	��)��� :G.� %� ��� ����������� ������� ��	�� �
��	 � ���� ������� ��	 ����	���� ����� ��	���� �� ���� ��
�� ��	��� ���� ���� ����� �� �����
�	� ���� ����� ��	�����
������� ���� ������	 ������ ���� ��� ��������� ��	�� �� ���
����������� �������� ���� �����	���� � !����� �����������!
�� ��� ����������� ���� ����� ��� ��	�� ���
���� �� �����
2��� ��������� ���� ������ ��� ������� ��������� ���� ���
������ ���	����� 4������ �� ���� ��� ��	�� ���� ���	��� ���
������� �������� ����������

�� ���
��� ���� �������� ��� B����� +������ �� ���� ��	�
��� �/�����	 �� � ��0����� ������ ��� ��� ������� ����
���� �� ��� ����������� �������� ���� ��0����� �� �������	
����� ��� B����� +������ �� ��� ��� ������� �� ��� ������
������ ������� ���
���� �� � ���������2�	 ���������� ���
�����0����� �/������� �� ��� B����� +������ ����	� ��� ����
�������� ������� ����������� � ���	���� ���� ������� �� ���
������ �������� ����������� �� ���� ��	�� ���� �������� ���
��	� �� ������� ��� ������ ������� ��������

5
10

15
20

25
30

35
40

0

20

40

60

80

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Node id
Packets

E
rr

or
 (

m
m

)

������ .� ������

 �$ ��
������� �����������

+����� > �� �� �/����� ���� ��� �������	 ���:������� ����
�������� &� �� ���� 	������� �� ��� ��/� �������� �� 	�
���
���	 ��� ����������� �� ���:� �� �� ���� �� ������� +,'-��
�� ����������	 ��� B����� +������ �� &�,&4 ��	 ����
����� ��� &�,&4 �������� ��	 ��� &�,&4 6KK ���
�������� �� ���������	 ��� 2����� �� 6KK �� �� ��� ��� ����

212

�� ��� ������� ����� �� ���:� ��� 2���� 	����������� ��� �/�
������� �� 	���������	 �������� ��2������ �� � ������� ��
(* ��	�� ��	 D �������
� ��� ������� ��	�� �� ��� ����
���� ��
� �� �
����� 	����� �� *� #3 ������ ����� ��	 ���
:G �� ����� �������� ����� �� ��� 	������� �����������
������� ��� /��/�� ����� ��� ������ �� �������)��������
��	����. ����������	 �� ���� ��	�� ��� ��	� �	� ��� �����
�� ��� ���/�� ��	 ��� ���/�� ����� ��� ����� �� ������������
���
����� �� ��� ����� ������ ��� ������� ��� ����������	�
�� ������� L G �� ��� /��/��� ��������� ��� ������ �� ��� ����
���� ���������)�������	 �� ������� 3�:.� &� �� ��� �� ����
���� ��� 2����� ���� ��	� ������ �� 	�<����� ��
��� �� ���
���� &���� � ��� ���������� �� �/������� ��� ��	� ��0������
�� ��� ����������� �������� � ������ ���	���� �� ����������	
���� 	��
�� ��� ����� 	��� ������ ��� ����� �������� %� ���
��	� ���� ��	� ������	� �� ���������� ��� ��	� �������� ����
� (����������� ��������� ��� ���� ���� ����� ������������
�� ���������	 �� 	�� ��� ���������� �� ��� ����������� ����
����� &� �/������	 �� 3�#� ����������� �������� ���������� �
����������	 ���2�������� �� ��	�� ��	 �������� ���� ����
�������	 ���2�������� ���
���� ��� ��������� ���� ����� ��
��� ����� 	���������

��� ��	�� �� ��	�� �/������� �� ��� ����������� �������
��0����� 	��� ��� ���	 �� �� �����2�	 ��� �� ���	� �� ��
���������� �
�� ��������
� ���������� �� ��� ��0������ ����
������� ���� ��� ��	�� ���� ����� ��	�� ������� ����� ���
������ ��	���� ��� �� �� ���������� ������ ����������� '��
�������� ��� �� �������� ���� 	���������	 ����������� �������
�� �� ����� A���������	 A���� +���� ������)AA+�.� AA+�
������ �� ������	 �� �� ��������� ������� ��	� ������ ���
����������� ���� ��	 ��� ��� ��� ��� ����������� A����� ���
���
����� �� ��� ������� �� AA+�� ���� ���� ��	� �� �����	

�����	� ��� ��	� �� �������� ��	 ����	����� ��� �������� ���
������ ��	 ������ � ������ %� ��� �����	 ��������� �� AA+��
��	�� ������� ��	 ����	���� ����� ��������� &� ���� �����
��� ��	�� ���� ���� ��� ���
������ ��� ������ ��� ���� ���
����� ��� ���
����� 	������ ��� ���� �����
�� �� ����� ����
��	� �����	 ��������� ��	 ����	���� � ��� �������� ���
	���� ��� 	���������	 ��������� ��� 	��
��� ��� 	���������	
����������� ������� �� ����� �� 2���� #G� +����� > �����
��� ��� ����������� ������	� �� � ������� �� D �������
��	 (* ��������� ��� AA+� ��������� ��� ���� �/�����
��� �������	 ���� ":#$�

+������� ���� ���� ��� B����� +����� ���	 �� ��� �/�����
����� �� �� �����/������� �� ��� 	���������	 B����� +������
��� ������� �� ��� ��� �����	� ��� �� ��	� �0��
����� ��
��	�� ���� �/������ ��	 ��	��� ����� ���������	��� ��
����
���� ��������� �� �� �� 	��� �� "#($� %� ��� ���������������
�� 	� ��� ����������� ��� ��
������� �������� �� ��� ������
������ ��	��� �� ������
� ����������� ��	 ��������������
4����� 2�������� ���� 	����� 	������� ��
���2�	 ���� ��� ���
����� �������	 �� ���� �����/������� 	� ��� ���������� ���
�
����� 0������ �� ��� ���������� ;� �����	 ���� �� �������
��� ��� ������� �� ��� ����������	 ��	 	���������	 ��������
��2������ ������� ��� ����� ����� ��� �� � ���� ����� ��
*: �������� �� 	�<����� �����
������ ���� #G �� #GG ��	���
+��� ���� ���������� �� ����	 ��� ���� ��� 	�<������ ��
��� ������� ������� ��� ����������	 B����� +����� ��� 	���

+�� ������� ��	 ���	
��������� �������� ��� ����� ����
����� ��� ��� ������� ������	� �� ��� �
�� �������	
��	���

����� ��� ���������)��������� ����Q.
!
�
���� @L �"��

$��
@L# @ :
$�� # � $�
�%�

�� ���� ���	 �$
	 �� #M �������"#$ @L ��	 ���

5��� ������� �� �$
	 ���� !@
�$ ��� !
��
����)
. ����

����
!
�
����)
.@L�"��M�������)
."!$@L���%�"
������� ��� �������� �������� ��	 ����	���� ��
�$
LG �#@L����).M
@L
K #
��
� �&������"
'� L ����).��#M
����������	���)�&������"
'�.

���
�$ �������)
."!$L������ ����

���� ���	 �$
	 �� !M�������)
."#$@L "�� ���
��
� �$ ����� �� � # ���� �������)
."#$ @L������ ����

���� ���	 �$
	 �� # �������)
."#$@L��	 ���
��
� �$ ����� �� � # ���� �������)
."#$L���%�" ����

���� ���	 �$
	 �� # ���
��
�)R ��������� R.
���

5��� � �������@
�$ �'�!�"��� L ��	�� �� �&���� ������ L �"��

����
������� � ��� �������� �������� ��	 ����	���� ��

���

�$
�

)N��.
� �

�
N���
��

(P

���� �'�!�"��� @L �"�� ���
���� ����������	���)�&������"
'�. ���

5��� ������� �� � ��	���	 �������� ����	����@
�$ �'�!�"��� L �"��

���� �&���� ������ @L �"�� ���

������ �/� &�
������� ����������� ���������
���,�� � &&��

�������	 �����/������� �� ���	 ��
��� ������ +����� ##
	������ ��� ������ �� ��� ����������� ��� ���� 	�<������
�� G�G#3 ����������� ���� � ����	��	 	�
������ �� G�3*���
4���	 �� ���� ������ ��
���2�	 ���� ��� 	���������	 ���
���/������� �� ��� B����� +����� 	��� ��� ���������� ���
����������� ���������

7. EVALUATION
;� �
������ ��� ����������� �� ��� ����� ���������������
�������
� ������� � ��� �� ������������ ��� B����� +���
���� ��� ����������	 �� &�&,4 ��	 ���� ��� �����	 ����
��� ���: ��������� ����� ��� &�,&4 �������� ��	 ���
&�,&4 6KK �������� ��� ��0����	 ��������� ��� ������
�������� ��� ����������	 ����	� ���:� 5���� ���� ����������
����� �� ������	 ��� � ������ �� �/��������� �� � ���� ����� ��
:GG 	�<����� ���������� '�� ���������� ���������� ��� ���
�� ����� ��� ���������� �� ��� �/���������� ��	�� ����
��	� ��� �� �<����
� ��	�� ����� �� #3 ������ ��	 ���� ��	�
��� ������� 	�������� ������� ��� ��������� ���� ��� ����
����� �� ��� ��	��� ��� ����������� ����� �� ��	���	 �� �

213

������ ��� �������
�� �$ ��������0�� ��� ��
�
������� ������

���� ���� �������� ���	��
������� ���� :G �� ����	��	
	�
�������

��� ������� ���� �� ��� ���: �������������� �� ��
�����
��� ������� ��������� �� ��� 	���������	 ����������� ������
�
�� � �������� �	���� �������� ��� 	���������	 ���������

������ �� ��� ����� ��������������� �� ����������	 �� �
������� ����� �� ���:� ���� ������� ����� ���� �������� �
������� �������� ���� 	����
��� ��� ������� �����������	
�� ���� ��	�� ��	 � ������	��� ��������� ��� ������	���
������� ���� ������� ��������� �� 	�������	 �� ������� 3�:�
����� ������� ������� ��0��������� ��� ��Æ����� �� ����
����������� �������� �� � ����� 	���������	 �������� �� ���
���� ��� ������� ��������� ��	 �� ������� ��� 	���������	 ���
���������� �������� &� ��� &6 ����� �� ��� � ��	�2�	

������ �� ��� %��� 9G:�## �������� ���� � #3������ ������
������� ����� ��	 �� �<����
� 	��� ���� �� :G�����

+�� ��� ����������	 ����� �� ���	 A�1 �� ��� ������� ������
���� %��� 9G:�## �� ��� &6 ��	 �� ��� ��� B����� +�����
�� ��� ����������� ������

7.1 Computation Cost Comparison

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

10 20 30 40 50 60 70 80 90 100

No. of Unknown Nodes

M
F

lo
p

s

Distributed Centralized

������ ��� ����������� ��
� �������
��

'�� 2��� �/�������� �������� ��� ����������� �
�����	
������� ��� 	���������	 ��	 ����������	 ����������� �����
�	� �� �����	��� ��� ������ �� +,'-� �������	 �� &��
,&4 �� ������� ��� �������� ��������� �� ���� ����� ���
��������� ���	 ��� ���� ���� ��
� D ������� ��	
������ ����
��� �� �������� ������� ���� #G �� #GG ��	��� ��� ����
��� �� �������� ��� ���	 �� ���������� �� #G� ��	 ��� ���

����� ���� ��� �
����� ��� :G ��������� �� ���� ����� %� ���
����� ��� ������� 	������ �� ���� �������� ��	 ���� ��	�
��� �� �
����� �� D ���������� ��� ��������
� ������ ��
+,'-� ��� ��� ����������	 ��	 	���������	 �����������
���� ��� ����� �� 2���� #:� +��� ���� ������� �� ����	 ����
��� ����������� �
�����	 �� ��� ����������	 �����������
��	�� ��������� ���� ���� ��� ������ �� ������� ��	��� %�
���� ���������� ����� ��� ����������� �
�����	 ������� ��
�� ����� ���� ��� ������ �� ��	��� ��� 	���������	 ����
�������� ��	�� �� ��� ����� ���	 ������ �������� ���� ���
������ �� ��	��� ��� ����� ��� ��� 	���������	 ���� �� 2����
#: �� (�=+,'-�� ������� ���� ���� ��	� ����	� �����/�
������� (�=+,'-� �� ������� �� �������� �� ��� �����
����� C������ 	������ ��� � ������� ����	 �� �����������
�
�����	� &� ��� ������� 	������ ���������� ��� ������
�� ����������� ��0����	 �� ��� ����������	 ��	�� ���������
�/������������ +����� #(����� �� �/����� �� ���� ����� %�
���� �/������ ��� ������ �� �������� ��	 ������� �� ���
������� �� ���� ��������� 6������� ��� ���� �� ��� �������

����� ��� ������� 	������� ��� ������ �� ����������� ��
���� ��	� �� ��� ����������	 ���� �� ���� ������ ���� �������
�� ��� ������ �� ������� ��	�� �� %� ��� 	���������	 �����
	������ ���� ��������� ��� ������ �� �	��� �� ���� ��	�
����� ��� ����������� ������ �������� ���� ��� ������ ��
��	���

������ ��� ����������� ,
1 ���"��# ���
���

+��� ���� ���������� �� ������	� ���� ��� 	���������	 ����
�������� ��	�� �� � ������ ������ ��� ��������� ��	� �����
������ �
�� �� ����������� �� ��������	 � ������� ������
����� ��� 	���������	 ��	�� �� ������� ��������� ���� ����
�� ��	��� ����������� �������� ���� �� ���������� ���������
�� ��� ���� �� ��� ���� ���������� ���� 	� ��� ��
� ���	����
������� ��� H������ ����� ����������� ��� &�>#+1*G9# ���
������������� �� ��� ������������ ��	� �� ��� ���� �/������
��� &1=�A% ���� �� ��� ��������������� ��� � 2/�	�
����� ����������� �� �� ������� ��� H������������ ����������
�� ��� B����� +����� ����� � �������� H������������ ��������
&� � �����	 ��
�� �� ������������� �� ��� ��� �� ��� ����
���� �� ������������ ��� B����� +����� ����� 2/�	������
���������� �� ��� �/���������� ��	��

7.2 Localization Accuracy
�� 0������� ��� �������� �� ��� ������������ ����� �� ������	
��� ������ ��� 2��� ���� �
������� �������� �� ��� ���������
���� ������� ����	 �� ��� ����������� ����� ����������
�� ��� ���������� 	������� ����������� ������� +����� #*
����� ��� ��� ����� �� ��� ��������� ��������� �� ��� �������
������� ��� ����� �� ������� ���� ������� �� ��� ��������

214

Average Error Distance

20

21

22

23

24

25

26

27

28

20 30 40 50 60 70 80 90 100

No. of Unknown Nodes

E
rr

o
r

D
is

ta
n

ce
[m

m
]

Distributed Centralized

������ �%� 2������ �$ ������0�����
 � ��#��"� ����

������
�

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Error Distance [mm]

F
re

q
eu

n
cy

Distributed Centralized

������ �)� 	
������ ����� ��
��������

�� ���� �������� �� :G �������� ��� ����� �� ��� ���������
���������
��� ���������� �� ��� ������� �������

+����� #3 ����� ��� ��������
� ����� 	����������� �
�� ���
��������� ���	 �� ���� �/�������� ��� ���� ��� 	���������	
��	 ����������	 ������ %� ���� ����� ��� �
����� ����� ���
:=�= ����������� ���� � ����	��	 	�
������ �� #D ���

;� �����
�	 � ������� ����	 ���� �� �������	 ��� �����
�� ��� ��������� �� 	�<����� ����������� ����� ��
���� ����
��H���� ��� ��� ����� ��������������� ����	 ������� ����
���� �������� 	������� ����������� ������� �� ��� ��������
��� �� ������� 	���������� ��� ������� �� ��� ���������� ���
����� �� 2���� #D� ��	 � ����	 �� 	�<����� ������� �����
������� ���� #G ������� ��	�� �� #GG ������� ��	��� :G
�������� ��� ���� ���� %� ��� ����� ��� ������ �� �������
�� ���� ��������� D ������� ���� ���	 �� ���� �������� %�
���� ���������� ���� �� ���� ����	 ���� ��� ����������� ��
��� 	���������	
������ 	����	�� ������ �� �������� �� ����
���� #GG ��	��� ���� �������	 �� ����� ����� ��� B�����
+����� ��0����� ������	 �� ���������� ��� ��������� �� ��	��
���� �������� ������� ��������� ����� ����������� �������
��	�� ���� ���� �������� ������� ���������� '�� �������� ���
������ �� �������� ���� �<��� �� �� ���� ��� ���� �� ��� ����	�
��� ��/)�������	 �� ������� 3�:.���� �������� ;� �/����
���� �� ��� B����� +����� ����������� ��0����� ������ ��

��� ��	�� ���� ��� ������� ����	��� ��/�� ���� ��� �����
��� ��������	 ���
� ����	 �� �
��	�	 ��	 ��� ���
�������
���� �� ������� ;� ���� �� �/����� ���� �� ���� �� ���

Average Error Distance

1

21

41

61

81

101

121

141

161

181

201

10 20 30 40 50 60 70 80 90 100

Error Range

A
ve

ra
g

e
E

rr
o

r
D

is
ta

n
ce

[m
m

]

100 Unknown Nodes

90 Unknown Nodes

80 Unknown Nodes

70 Unknown Nodes

60 Unknown Nodes

50 Unknown Nodes

40 Unknown Nodes

30 Unknown Nodes

20 Unknown Nodes

10 Unknown Nodes

������ �*� 	����
 �� �
������
 �� ��3����� ���
����
���� ���
� ��,��

7.3 Communication Cost and Convergence La-
tency

��� ���
������� ������� ��	 ������������� ������� �� ���
����� ��������������� ��� ���� 	�Æ���� �� �
������ �������
�� ����� 	����	���� �� �������� ������ ����������� %� ���
����� 	���������	 ����� ���
������� ������� 	����	� �� ���
�
������� ������������� ���	��	�� ��	 ��� ��	� ��������
��� ������ 6��
������� ������� ���� 	����	� �� ��� ���� ��
��� ����������� ����� &� ��� ������ �� ��	�� ����������
��� ��0����� �� B����� +����� �/�������� ���� ���� ������ ��
�������� ��	 ���� ���������� �� ��� ��0����� ��� ��0����	�
��� ������������� ������� �� ������� ������ ��� ��� ��	���

;��� ��������� �� � ������ ����� �� ��� �������� ��� ����

������� ������� �� ��� ����� ��������������� �������
� ��
� �������� �� ��� ������������� ������� ��� ������������
��� ������� ���� ���� ������ �� ��� ����������� �������
��	 ����� ��	 ���� 	����	� �� ��� ����� �� ��� ������� ����
������� %� ��� ����������� ���� �� ������ ��� �����������
������� ���� �� ��� 	������� ���������� &� �� �/�����
� ������� �� #GG �������� ��	 D ������� ����� �����/��
������ 3 �� = ������� �� ���
���� �� ��� -������ %%% =GG
8� ������������ �
�������� ��� ������������� ���� ��
���� ������/� %� � ��������	 ������������� ��� ����������
���� ���� 	����	� �� ��� ���� �� �������� � ������� ���	 ��	
��� ���� �� ��������� ��� ����������� ���� ��	 ����� ����
��� ������� ���	�

+����� #= �� � ���������� �� ��� ������������� ���� ��
��� ����� ��������������� ������� �� ��� ����������	 ��	 	���
�������	 ����� �/�����	 �� � ������� �� ** ������� ��	��
��	 D �������� ��� 2���� ����� ��� ����� ������ �� �����
����������	 �� ���� ��	� 	����� ��� ����� ���������������
�������� ��� �
����� ������ �� ����� ����������	 �� *3>D
��� ��� ����������	 ������ ��	 **93 ��� ��� 	���������	 �������
&������� �� �
����� ��� ������������� ���� �� ������ ���
����� ��� 	���������	 ������ ��� �� �
�� 	����������� ��
����������	 ������ &		���������� � ��
������ ���	� �� ���
	���������	
������ �� ��� ����� ��������������� �� ����� ��
2���� #9� ��� �
����� ���
������� ������� ��� ��� ��������
����� �� :G ��	 *G ��	�� �� ������ A����� ��� ������ ����

215

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

Node id

B
yt

es

centralized
distributed

������ �+� ������������� ��
� �� �)/ ���� ����
"��# 4* �����
 %% ��#��"�
�

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

Time(s)

E
rr

or
 (

m
m

)

40 node network node
20 node network

������ �-� ���,������� ������� �$ ��
������� �����
���������������

�� ��� �������� � ��� �� ����������� �� ����� �� �����
� �
������
��� ����� ��2������ �� ��� �������� ��������� &� ����
������ ���������
�� ������������ �����	 ��
� ��� ������ ��
	���	� ���� �� ���� ��� �������� ��2������ ����� �� �	�
?������ ��� ���
������� ��������� P� +������� �� ���� ����
���� ������� �� ������ ����� ��� �������� ��2������ ����� ���
�������� �
�� �� ���� �� ��� ��	�� ���� 	����� ��� ��������

7.4 Localization Experimental Node
�� �/�������� ���� 	�<����� ����� �� ��	� ������������ �����
���� �� 	�
�����	 � �������� ������� 	�
��� ���� �� �����	
�����	� �/�������������� ��� �������� ������������� �����
��	 �� ���� 	�
��� �� ������� �� 56 4�������7� 1��� ��	
%6& ����� 55 ��	 56,&7� �	��� ��	� 	�������	 �� ":$�
%� �������� � ��� ����� ��	�� ���� 1+ ���������� ��	 �
*8� &����#G(, ��������������� ���� &��,� ��� 	��
���� 	�������� ��� ��� ��������� ���� �� ��� ��	� ��� ����
��
	�<����� ���� ��� ��	�� ��������	 ���
�� %� �		����� �� ���
&����#G(, ���������������� ��� ��	� ��� � *G8� &1
�854 ��������������� ���� ���� &����� ���� ���
�� ��

������ �.� ��� �6���������� ����

� ���� �������� ����������� �������������� ���� ���������
��� #4 �� +,&�8 ������ ��	 #(DB4 �� 1&� �����
�� ��Æ����� �� ��� ��
���� �/������ ����		�	 ��������� ����
���� ���� �� 1�	 8��7� �6�� ��	 �6,���/� ���� ���
�	�� �

�������� ����������� ��
�������� ��� ���	���� ��� ������
������ �� ��� ������������ ���������� ���� �/������ ���������
��������� ���	 �� � ��	�
������ �� �������� 	�
�����

%� �		����� �� ��� ���� �������� ���������� ��� ��������
��	� ��� : ����������� ���� ��� �� ���	 �� ���� �����������
��	 �� 1��*93 ��������
��� ���� ���
�	�� � :4�� ��� ��
���������� 	��� ���������� �� �/��������� �� �� ���
�� �� �
������� �� ��� ��������������� ��� 1��*93 ���� ���� �������
��� ��������� �� ��	� ������)�� �� (D ��	�� ��� �� 	�����
������	 ��������. ���� ���� �/������������� ��	 	��� ����
������� ��
������ ��������� '�� ��	� �������� ��
���� �����
��
��� ��	�� ��	 �������� ����� ������� �������� ���� ���
������� ��� ����� ����������� �� ��� 	�<����� ���������
�� ��� ��	�� ��� ���� ����	 ���� ������� � �� ����������
���� ���� 	������ �� ��� ��	� ��� ��
�	 	����� ��� ���������
���� �������� ,���� �� �� ���� ���� ��� ��� ������������� ��
������� ������� ��	����� �� ��� B����� +����� �� ����� ���
��	�� ���� ��� ������������ ������� �� ��������	� ��� 	���
����� ����������� ����� ��	 ����� �� �� ��������� ����	
���� ������� �� ����� �� *GB8� ���������� �������� ��	 �
������������ ���� ��� ���
� �� � �������� ��� ����������
	������� ����������� ������ ��� �� �<����
� ����� �� 3 ���
���� ��	 �� �������� �� G�3 ������������ ��� ��	� �� �����
�� � ������ 33G�&� ,�������%�� ������������ �������� ���
������� ����	� ���� ���������	 �� 2� �� � : / (/ #�:3 ���/�
��������� ����� �� ��� 2�����

8. CONCLUSIONS AND FUTURE WORK
%� ���� ����� �� ��
� 	�������	� ��� ����� ���������������
�������
� ��� ��	� ������������ ��������� ;� ��
� �����
���� ����� ���� ����� ����� �������� ��	�� ���� ��� ��	��
������ ��������	 �� ��	�� ���� ��	� ��������� ��� ��������
����� ��������� ���� ������� ���������� �� ��� ������ ��� ����
������������� &���� ���� ��� 	���������	 �������� �������� ��
����������	 ������ ��	�� ��� ��������
��� ���
� � ������ ���

�&� 	����� ���� �� �����	���	 ���� ����7� ��� ���� ���
���
�� �� 	���	�	 �� �� ���� � ������ ��������� ���� ��� ����
������ ��	 � ����������� ���� ���
�	 �� �� � ���	 	�����
������ ����� ��� ��� ����������� ���� ��� ��� &����#G(,�
&����#:9, 	��� ��
� � ����������

216

���������� ������� ���� �� ��	�
�	��� ��	� ������ ���
��
��� ��� �� � ������ ���	���� ��� ��������� � ������ ���
����� ������� ���������� � 	���������	 ����������� ��	��
���� ����� ��������� ������������ �� ������ ��������� '��
����������� ��
� ����� ���� �������� ��� ����������� ����
������ �������� ���� ��� ������ �� ��	��� ��� ����������
������ �� ������������� �������� ���� ��� ����� ������
���������� �������
� �����	 �� ������	 �������������� �� �����
��������� &� �� ��
� �/������	 �� ��� ��������� �� ����
������ � ���	 �������� ����� ��� ���� � ������������ �� �� ���
������� ��
���� ����	����� ������� ������� ����� ����������
	������� ������������ ��	 ���� ������� ��� ��0����	 �����
	����� ��������������� �� ��� ��� ������ ������� �� � ������
����	����� ������� %� �		����� �� ��� 	���������	 ��������
���� ��	�� ��� ����� ��������������� �������
� ������� ��
�� �� ��������
� ������ ��� ��������� �������������� ����	 ���
���������� ������� �� ������ ���	�� ������������� %� ����
����� �� ��
� 	�
�����	 ��� ������������� ���� �� ��� ��
��� ���������������� ��� ��������� ��������� �� �� ���	� ���
����������� ���� ������� �� ��� �������� �<����� �� ���� ��	�
�� ���� �� ��� ������ ���� �� ���� �� ���	� ��� ��������
���� �� ��� ���������� ���� ��� �������� ����	 ������� ���
������������ ��	� ���� �� ��
� 	�
�����	�

9. REFERENCES
"#$ A� ������� 1� E�
��	��� O� 8��	������ �� B�����

���	 ���	�� ������� ��! "������� ����
��	
��
�
"���� ��	����� -�����	���� �� ��� 2��� ������
������������� ���������� �� ����� ��������� ��	
����������� �������� ;���������� #>>>� -����@ :D(�
:=G

":$ &� ��

�	��� 6� 6� 8�� ��	 � 4� ���
����
� #����
�
$
��� �
��� %����
&�	
��
� '��(�� ��	���� ��
"������ -�����	���� �� ��� 2��� ������ �������������
���������� �� ����� ��������� ��	 �����������
������ :GG#� 1���� %����� O��� :GG#� ����� #DD�#=>

"($ &� 8����	� � O ������ ��	 E� �� ���������
)�����	
�� �� � ����! � �����
�� �� �����
&��
�����
&�	
��� -�����	���� �� ��� %���S1�O
%������������ 6��������� �� %���������� 1����� ��	
�������)%1'�G#.� ����� #G33T#GDG� :GG#

"*$ %��������� %�� ����@SS��������������

"3$,���� E���	 ��	 A������ ������ �)����	 �� �
��	
��	
�� ��
� �����	
� ��� ���	
����� ����
�
-�����	���� �� ��� %���S1�O %������������
6��������� �� %���������� 1����� ��	 �������)%1'�
:GG#.� ���� 8������ '������ :GG#�

"D$ C� -��������� & 6������������ ��	 8� 4������������
��� �
���	 %���	
�� "����	 "��	��� *�����
� � ��
��	���	
���� 6��������� �� ����� 6�������� ��	
C���������� ��� (:�*(� &����� D�##� :GGG 4������ &

"=$ O� ,�� O O�������� A�� O� A�6����� A� 1� B����� ��	
1� ������ ' "������� %���	
�� "��
�� �� +�� ���
�
'��(��)��	
� � -�����	���� �� %������������
6��������� �� ����� 6������������� ��	
C���������� &����� ##�#D� 4������ ������������

"9$ U� V�� O� 8��	����� ��	 A� �������
+�� �����
������ ,�� � �������	
�� �� '� (��

)��	
� � -�����	���� �� ��� &6 �%E'4%,� =��
&����� %������������ 6��������� �� �����
6�������� ��	 C���������� 1���� %����� O��� :GG#

">$ �� �����	������� +� B���������� E� W�� �
-�����?��� ,������ �� -
����� '� (�� "����
��	����� %������������ 6��������� �� �����
6�������� ��	 C���������)���6�� 7G#.����
#(>�#3G� 1���� %����� O��� :GG#��

"#G$,� A������� ,� �� E������ B� �� O� -������ ������
*��
	
�� ,�	
��	
��
� -
����� "���� ��	�����
-�����	���� �� %������ :GG#� &��������� &B� &����
:GG#�

"##$ �%6B ����@SS���������	�

"#:$ �� B������ .����	���
� +*" *
��
���� ���
'���
��	
��� &����� 8����� #>>D

"#($ 1����������� ��%�M 4����� E�&� "��� �	
� �����
&�	
��
�� ���� �� ���
�� ���	�� -�����	���� �� ��� (>��
%��� 6��������� �� A������� ��	 6������� ��	����
C�;� &��������� #:�#3 A��� :GGG�. -���������� CO�
5�&@ %���� :GGG� ��(*==�9:
���*� 3
���
)�/���K��K3::>.

"#*$ 1� ;��	� &� 8������ �� +����� ��	 O� E������� ���
'�	
�� /�	 %���	
�� "��	��� &6 ������������ ��
%���������� �������� O������ #G #>>:� ����� >#�#G:

"#3$ �� +�/���� � 8���������� ��	 E� -���<��
����	����	
��0	�1! ' -
���)�� � -
�����
2�	
�������
� "��	�� �� '� ���	��)���
	� ���
3
	��� "�	 '���
��	
���� -�����	���� �� �������� >9�
'����	�� +,� O��� #> � :*� #>>9

"#D$ -� 4���� �� -�	��������� 1&A&1@ '� ���/�
��
�
)$������ .�� %���	
�� ��� ����
� "��	���
-�����	��� �� %C+'6' :GGG ��� &
�
� %������
���� :GGG� �==3�9*�
�� :

"#=$ C� 4������ O� 8��	����� ��	 A� ������� +*"����� %��
���	 4�	��� %����
&�	
�� $� 3�� "���� #��
����
%��� -������� 6������������� �������� �������
%���� �� C��������� ��� -������� ;���	� &����� :GGG

"#9$ E� ;���� ��	 E� 4����� '� ��	����	
�� 	� 	��
5����� $
�	� &
������� ����
����@SS������������	�S �����S������S������%���������

"#>$ 1� 4���� ��	 -� 8���� ��	����	
�� 	� "
 ���� ���
'���
�� 5����� $
�	�
� ;���� -���� #>>=

":G$ 8�/����� ����@SS������/���������

":#$ E� ��� #
�	
��	�� +��� ,�����	
�� '������	 ����
����@SS������������
����S 	��
����S��������� �������S�/�����	�

"::$ 4� 1�� ��	 8+ A�������;����� $���� #����	��
&��
�� �
	�� �� ���	
����� 5����� 6�	�
� %��
-�����	�����A� ���� #(9� C��3 ��������� #>>#

":($ O� 8���� 1� ��������� &� ;��� �� 8������ A� 6����� ��	
B� -����� "��	�� '��
	��	�� #
��	
��� ��
��	����� "�����7� -�����	���� �� ��� C����
%������������ 6��������� �� &������������ ������� ���
-���������� ,�������� ��	 '�������� �������
)&�-,'� �%V.� ����� >(�#G*� 6����	��� &� 5�&�
C�
������ :GGG

217

A Distributed Computation Platform for Wireless Embedded Sensing

Andreas Savvides and Mani B. Srivastava
Networked and Embedded Systems Lab

Electrical Engineering Department
University of California, Los Angeles

{asavvide, mbs}@ee.ucla.edu

Abstract

We present a low cost wireless microsensor node
architecture for distributed computation and sensing in
massively distributed embedded systems. Our design
focuses on the development of a versatile, low power
device to facilitate experimentation and initial
deployment of wireless microsensor nodes in deeply
embedded systems. This paper provides the details of our
architecture and introduces fine-grained node
localization as an example application of distributed
computation and wireless embedded sensing.

1. Introduction
 The rapid advancements in embedded wireless devices
have enabled a new set of interesting and diverse
applications. One class of applications is wireless
microsensor networks where small devices embedded in
the environment coordinate with each other to perform
unsupervised sensing and actuation. Typical tasks include
condition-based maintenance in factories, monitoring
remote ecosystems, endangered species, forest fires and
disaster sites [9]. To complete their sensing tasks, in tiny
wirelessly connected sensor nodes are required to form an
ad-hoc network that can sense events, interpret the sensor
readings and report the results to a remote control center.
This paradigm creates a set of new multidisciplinary
challenges that need to be addressed. First, new
lightweight and energy efficient methods are required to
enable nodes to self-organize and construct a network on
the fly are required. Second, the different sensing
modalities need to be well understood. Third, new
mechanisms for the in-network processing of sensor data
need to be developed to improve system latencies and
help to conserve power by reducing communication.
 In our efforts to develop robust wireless sensor
networks that can operate without human supervision, we
study the operation of sensor nodes under realistic
deployment conditions by constructing a deeply
embedded wireless microsensor system. As a vehicle to
the exploration of such systems, we have developed the
Medusa MK-2 node (Figure 1), a versatile, low cost, low
power wireless sensing device. The goal of this device is
to enable experimentation with different sensing

technologies, assist with the development of new sensor
network protocols and applications and to accommodate
the first deployment phase of a deeply embedded sensing
environment, the Smart Kindergarten [3]. In the context
of our research, the Medusa MK-2 node is used to
provide fine-grained node localization services in the
Smart Kindergarten environment for studying group
interaction problems, but can also provide a flexible
platform for the study of a wide variety of applications.

This paper presents the details of the Medusa MK-2
design. While our design focuses on producing a low
cost low power distributed computation platform for
wireless embedded sensing, great care is taken to attain
the maximum flexibility for experimentation. The
remainder of this paper is organized as follows. The next
section provides an overview of some general sensor
node requirements and introduces the MK-2 architecture.
Section 3 provides a detailed description of the node
subsystems. Section 4 discusses node localization as an
example application, section 5 presents the related work
and section 6 concludes the paper.

Figure 1 The Medusa MK-2 node

218

goodelle
Text Box
Appendix O:

2. Sensor Node Requirements
 In typical sensor network scenarios, large
numbers sensor nodes are expected to be deployed an ad-
hoc manner to monitor a set of events [9]. The design of
such sensor nodes is driven by the following factors:
• Size – In order to be unobtrusive to their

environment these nodes should have a small form
factor.

• Cost – These devices are expected to be deployed in
large number and be disposable. This implies that
they should be manufactured with very low cost.

• Power Efficiency – Since these devices are expected
to be small, they should be able to operate over small
batteries for prolonged time periods. To do so sensor
nodes should use low power components and also try
to make optimal use of the available energy
resources.

• Flexibility – To facilitate experimentation these
devices should be very flexible in programmability
and should have a rich set of hardware and software
sensor interfaces to accommodate different sensing
technologies.

 Figure 2 depicts a typical sensor node architecture. The
node consists of a power supply subsystem that contains a
battery and a DC-DC converter, a processing unit which
is usually made up of a low cost, low power
microcontroller, some memory, a set of sensors and a low
power radio for communicating with other nodes. To
optimize the operation of a sensor network made of such
nodes all components attributing to the operation of the
sensor node need to be closely studied and understood.

2.1 Medusa MK-2 Overview

To facilitate our research and experimentation in sensor
networks we have developed the Medusa MK-2 wireless
sensor node. Although the primary driver for the
development of this node is the study of node localization
problems, Medusa MK-2 is also a versatile device for
testing different sensing solutions and for exploring a
wide variety of new protocols and applications in sensor
networks.

Figure 2 depicts the Medusa MK-2 architecture. The
computation subsystem of the node consists of two
microcontroller. The first one is an 8-bit 4MHz
ATMega128L MCU [1] from Atmel. This has 32KB of
flash and 4KB of RAM and it is used as an interface to
the sensors and for radio baseband processing. The
second one is a 16/32-bit AT91FR4081 ARM THUMB
processor [2] also from Atmel. This is a more powerful
processor based on an ARM7TDMI core running at
40MHz. It has 136KB of RAM and 1MB of on-chip
FLASH memory and comes in a compact 120-ball BGA
package. The communication subsystem is made up of a
TR1000 low power radio from RF Monolithics [7] and an
RS-485 serial bus transceiver for wireline
communication. The sensing subsystem is made up of a
MEMs accelerometer (ADXL202E from Analog Devices)
and a temperature sensor. The node also has a rich set of
interfaces: 8 10-bit ADC inputs, serial ports (I2C, RS-232,
RS-485, SPI) and numerous general purpose I/O (GPIO)
ports. An accessory board implements an ultrasonic
ranging subsystem uses a set of 40KHz ultrasonic
transducers (both transmitters and receivers). These are
used in coordination with RF transmissions to measure
inter-node distances for node localization. In addition to
the sensors, the node also has two pushbuttons that serve
as a user interface. These are used to trigger events and to
execute different tests during experimentation. The node
has two external connectors (see Figure 3). The first one
has all the necessary connections for communicating with
a PC to download and debug software. The wiring
required for connecting the node to an external GPS
module is also provided on this connector. The second
connector has a set of ADC, GPIO and communication
lines and it serves as an expansion slot for attaching add-
on boards carrying different sensors. The description of
each of the node subsystems is provided in the next
section.

Mega128L

AT91FR4081

Light &
Temp

ADXL202

RS-485

PButton

PButton

PMTU

RFM

UART,
JTAG,
GPS

UART &
JTAG

SPI

SPI

ADC/SPI/
GPIO

Connector 1

Ultasnd RX/TX
Accessory

Board

C
on

ne
ct

or
 2

Figure 3 The Medusa MK-2 architecture Figure 2 Typical sensor node architecture

Power Subsystem
 Main Node

Computation
Subsystem

Memory

AD
C

R
ad

io

Se
ns

or
s

D
C

- D
C

B
at

te
ry

219

3. Medusa MK-2 Components

3.1 The Computation Subsystem
To design the computation subsystem, we classified the
node computation tasks into two broad categories; low
demand and high demand low frequency, according to
their computation needs. The fist class contains the
periodic tasks that the sensor node has to make such as
the base band processing for the radio while listening for
new packets, sensor sampling, handling of sensor events
and power management. Although these tasks require a
high degree of concurrency, they are not particularly
demanding in terms of computation and can be easily
handled an 8-bit microcontroller. The TinyOS [4]
development effort at UC Berkeley has shown how such a
task set can be supported by with a low power AVR
microcontroller. The Medusa MK-2 architecture follows
the same approach by dedicating an AVRMega128L
microcontroller to handle these less computation
demanding but highly concurrent tasks that a sensor node
has to fulfill.
 The second class of computation runs a set of
algorithms that process acquired sensor data to produce a
result or conclusion about what is being sensed. An
example of such computation can be drawn from the fine-
grained localization problem described in [5]. In this
situation, a sensor node is expected to compute an
estimate of its location by using a set of distance
measurements to known landmarks or beacons. To solve
this least squares estimation problem a node is required to
perform a set of high precision matrix operations. This
type of computation consumes between 3-4 MIPS [5] and
has high accuracy requirements and it is more suitable for
a higher end processor. Performing this computation on
an 8-bit processor, would incur high latencies and less
precision in the calculation due to round off errors.
Instead the 32-bit instruction set and datapath provided by
the 40MHz ARM THUMB processor is a more suitable
environment for this type of computation. Furthermore,
the THUMB microcontroller has sufficient resources to
run some off the shelf embedded operating systems such
as Red Hat eCos and uCLinux. This adds the additional
advantage of allowing some of the existing applications
and a rich set of libraries to run on the nodes.
 This distribution of computation is also favorable from
a power/latency perspective. The THUMB processor
executes instructions at a rate of 0.9MIPS per MHz at
40MHz while drawing 25mA with a 3V supply. This
gives a performance of 480 MIPS/Watt. The
ATMega128L on the other hand operates at 4MHz and
draws 5mA at a 3V supply thus provides 242 MIPS/Watt.
Table 1 shows the microcontroller parameters which
result in this power/latency tradeoff.

Table 1 MCU Comparison
 AT91FR4081 ATMega128L
Datapath 16/32 Bit 8 bit
Clock Speed (MHz) 40 4
MIPS/MHz (ARM 0.9),

(THUMB 0.7)
1

Power @ 3V(mW) 75 15
MIPS/W 480 242

 The two processors communicate with each other with
a pair of interrupt lines, one for each microcontroller, and
an SPI bus. The microcontrollers use the interrupts as a
mechanism for waking up each other from sleep mode
when information exchange needs to take place.
Information exchange takes place over SPI. The SPI
interface was selected because of its high-speed
capabilities (above 1Mbps). The SPI bus is included on
connector 2 (see figure 3) so it can also support additional
processors added to the node such as DSP processors or
additional microcontrollers that are part of additional
sensor boards.

3.2 The Communication Subsystem
 The communication subsystem consists of both a
wired and a wireless link. The wireless link is
implemented with a low power TR1000 radio from RF
Monolithics. This radio has a 0.75mW maximum transmit
power and has an approximate transmission range of 20
meters. Additionally the radio supports two different
modulation schemes, On-Off Keying (OOK) and
Amplitude Shift Keying (ASK). The selection of a
modulation scheme can be done in software according to
the application specification. The radio supports multiple
data rates ranging from 2.4kbps to 115kbps. On the
Medusa MK-2 node, the base band processing for the
radio is done by the ATMega128L microcontroller. This
configuration allows running a lightweight medium
access control (MAC) protocol on the ATMega128L
processor. The S-MAC protocol presented in [12] is a low
power MAC protocol for sensor networks that is well
suited for this purpose.
 In addition to the wireless front end, the Medusa MK-
2 node is also equipped with an RS-485 serial bus
interface for wireline communication. A low power RS-
485 transceiver is attached to one of the RS-232 ports of
the THUMB processor and allows the connecting the
nodes to an RS-485 network using an RJ-11 connector
and regular telephone wire. A single RS-485 network can
have up to 32 nodes that can span over a total wire length
distance of 1000 feet. Besides providing a wireless
networking alternative in places with high interference
where radios cannot function adequately this

220

configuration allows a wide variety of node
configurations such as:
• Array formations – several nodes, each one

equipped with different sensors can be daisy chained
to form node arrays.

• Gateway functions – nodes can act as gateways,
connecting other wireless nodes to the wired
infrastructure. With the use of RS-485 several
gateways can be attached to the same workstation.

• Out-of-band data collection – during experiments
where the data is processed on the nodes and
communicated over wireless links, the raw data can
also be collected using the wired infrastructure for
offline analysis later on.

3.3 The Power Subsystem
The power subsystem consists of 2 main units: the power
supply and the Power Management and Tracking Unit
PMTU [10]. The power supply consists of a 540mAh
lithium-ion rechargeable battery and an up-down DC-DC
converter that has a 3.3V output and can source up to
300mA of current from the battery. Although with no
sensors attached, the node requires less than 50mA, the
power supply designed to source up to 300mA currents to
provide power-additional sensors than can be attached to
the node as accessory boards. Table 2 shows the average
current drawn by the main node components1 during
active and sleep node. According to the table, the
maximum power consumption of the node is less than
150mW. During normal operation, the node consumes
less power by putting the unused components in sleep
mode. In a typical sensor network setting, the ARM
THUMB processor together with the RS-485 and RS-232
transceivers are in sleep mode most of the time resulting
up to an 80% reduction of the overall node power
consumption.

Table 2 Current drawn by node components
Component Active(mA) Sleep(mA)
ATMega128L 5.5 1
RFM 2.9 5
AT91FR4081 25 10
RS-485 3 1
RS-232 3 10
Total 39.4 27

To get an indication of how the Medusa MK-2 power
consumption relates to other sensor nodes, we compared
its power consumption to the power consumption of a
higher end node, the WINS node [8] developed at the
Rockwell Science Center. This node is equipped with a
more powerful StrongARM SA-1100 microprocessor
from Intel, a 100-meter range 100Kbps radio from
Connexant and several sensors. The results of the power

1 Numbers obtained from data sheets

characterization of the WINS node at different
operational modes are shown in table 3. Table 4 shows
the same characterization for the Medusa MK-2 node.
Based on this comparison, the power consumption of the
Medusa MK-2 node when all subsystems are active is
approximately 10 times less than the power consumption
of the WINS node. Furthermore, by shutting down the
THUMB processor on the Medusa MK-2 node when not
in use can result in 44 times less power consumption than
the WINS node.

Another interesting observation noted in the power
measurements is that the power consumption of the radio
is almost the same regardless whether the radio is in
receive transmit or idle mode. This implies that no power
is conserved when the radio is in idle state, so it is better
to develop protocols that completely shutoff the radio
when not in use, hence a media access control protocol
like S-MAC is highly desirable.

To further reduce power consumption, the Medusa MK-2
node is equipped with a power Management/Tracking
Unit (PMTU). This is a set of three DS2438 battery
monitors from Dallas Semiconductor that keep track of
the power consumed by the different node sub-systems.
The first battery monitor keeps track of the power
consumed by the AT91FR4081 processor, the second
tracks the power consumed by the radio while the third
monitors the overall node power consumption. Using the
PMTU information, the Medusa MK-2 node can
implement power aware algorithms to maximize battery

Table 3 Power Characterization of WINS node

Table 4 Power characterization of Medusa MK-2 node

221

lifetime. By making this power consumption information
available to the application level, applications can set up
their own power aware policies and decide which parts of
the node to shutdown in order to conserve energy while
meeting their sensing, computation and communication
requirements.

4. An example application: Node Localization
To illustrate the use of the Medusa MK-2 node as a
distributed computation and sensing platform we use an
instantiation of the multihop node localization problem
described in [5]. In this problem, nodes with unknown
locations (white nodes in Figure 4) are expected to
estimate their locations by setting up and solving a global
non-linear optimization problem. To solve this problem,
nodes first “sense” their separation to their neighbors
using the node’s ultrasonic ranging subsystem. When all
the required measurements are made, the nodes with
unknown positions combine these measurements with
known location information of landmark nodes (black
nodes in Figure 4) to estimate their locations using
distributed collaborative multilateration.

In this type of setup, the optimal position estimate is the
one computed from a global vantage point that considers
all the physical topology constraints. This however is a
large non-linear optimization problem that computation
and memory-constrained nodes cannot solve individually.
With distributed collaborative multilateration nodes with
unknown locations in setups similar to the one in figure 4
are able to estimate their locations locally while taking
global constraints into consideration. As it was shown in
[5], using this fully distributed computation model,
resource constrained MK-2 nodes with unknown position
can collaborate with each other to estimate their physical
positions, a task that none of the nodes can perform
individually.

5. Related Work
Research efforts in the last few years have produced a
wide variety of sensor nodes ranging from tiny sensor
nodes promised by the Smart Dust project [6] to fully-

fledged nodes such as the WINS nodes [11] produced by
Sensoria Corporation. The Smart Dust nodes still in
development promise cubic millimeter scale form factor
and a few cents per node manufacturing cost. The WINS
nodes are already in use by the research community. They
feature a Hitachi SH4 floating-point processor running
linux and a long-range frequency hopping radio.
Although these nodes are very powerful for some
applications they are still large and power hungry and
fairly expensive for some indoor applications and
building large experimental networks in a lab setting.
 UC Berkeley’s MICA nodes [13] are an example of
lower cost nodes that is currently widely used within the
research community. The MK-2 node shares many
similarities with this node. It uses the same AVR
microcontroller and radio, it can support similar sensors
and it is interoperable with the Mica modes. MK-2 differs
from the Mica motes in that it has additional processing
power, larger power supply and a set of customized
features and sensor interfaces geared towards
experimentation, especially for node localization
problems.

8. Conclusions
We have presented the Medusa MK-2 node, a wireless
node for distributed computation and sensing. The main
focus of our development is to produce a simple, low cost
design that is easy to program and provides great
flexibility for experimentation in many different settings.
We believe that this node will provide an affordable
solution for constructing reasonable sized testbeds that
would help in the development and validation of new
protocols and concepts in this new era of wireless
embedded sensing.

Acknowledgements
This paper is based in part on research funded through
NSF under grant number ANI-008577, and through
DARPA SensIT and Rome Laboratory, Air Force
Material Command, USAF, under agreement number
F30602-99-1-0529. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation
thereon. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the
NSF, DARPA, or Rome Laboratory, USAF.

References:

[1] ATMega 128L Datasheet, Atmel Corporation
http://www.atmel.com/atmel/acrobat/doc0945.pdf

Figure 4 Solving for node positions in a multihop
network

222

[2] AT91FR4081 Datasheet, Atmel Corporation,
http://www.atmel.com/atmel/acrobat/doc1386.pdf

[3] M. B. Srivastava, R. Muntz and M. Potkonjak, Smart
Kindergarten: Sensor-based Wireless Networks for Smart
Developmental Problem-solving Environments,
Proceedings of the ACM SIGMOBILE 7th Annual
International Conference on Mobile Computing and
Networking, Rome, Italy, July 2001

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K.
Pister, System Architecture Directions for Network
Sensors, Proceedings of ASPLOS 2000.

[5] A. Savvides, H. Park and M. B. Srivastava, The Bits
and Flops of the N-Hop Multilateration Primitive for
Node Localization Problems, NESL Technical Report
TM-UCLA-NESL-2002-03-07, March 2002, available
from http://nesl.ee.ucla.edu/projects/ahlos/reports.htm

[6] J.M Kahn, R. H. Katz and K. S.J. Pister, Next Century
Challenges: Mobile Networking for Smart Dust, in
proceedings of Mobicom 99, pp 483-492

[7] TR1000 Radio Module, RF Monolithics,
http://www.rfm.com/products/data/tr1000.pdf

[8] Wireless Integrated Network Systems (WINS),
http://wins.rsc.rockwell.com

[9] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, Next
Century Challenges: Scalable Coordination in Sensor
Networks, Proceedings of the fifth annual international
conference on Mobile Computing and Networking,
Seattle, Washington, 1999, Pages 263-270

[10] A. Chen, R. Muntz, S. Yuen, I. Locher, S. Park and
Mani B. Srivastava, A Support Infrastructure for the
Smart Kindergarten, IEEE Pervasive Computing
Magazine, vol 1, number 2, April-June 2002 pp. 49-57

[11] G. J. Pottie and W. J. Kaiser, Wireless Intergrated
Network Sensors, Communications of the ACM, vol. 43,
no. 5, pp. 51-8, May 2000

[12] Wei Ye, John Heidemann and Deborah Estrin, An
Energy Efficient MAC Protocol for Sensor Networks
Proceedings of the 21st International Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), New York, NY, USA, June,
2002.

[13] Mica Motes, Crossbow,
http://www.xbow.com/Products/Wireless_Sensor_Networ
ks.htm

223

Design and Implementation of a Framework for Efficient and
Programmable Sensor Networks

Abstract – Wireless ad hoc sensor networks have
emerged as one of the key growth areas for wireless
networking and computing technologies. So far these
networks/systems have been designed with static and
custom architectures for specific tasks, thus providing
inflexible operation and interaction capabilities. Our
vision is to create sensor networks that are open to
multiple transient users with dynamic needs. Working
towards this vision, we propose a framework to define
and support lightweight and mobile control scripts that
allow the computation, communication, and sensing
resources at the sensor nodes to be efficiently harnessed
in an application-specific fashion. The
replication/migration of such scripts in several sensor
nodes allows the dynamic deployment of distributed
algorithms into the network. Our framework,
SensorWare, defines, creates, dynamically deploys, and
supports such scripts. Our implementation of
SensorWare occupies less than 180Kbytes of code
memory and thus easily fits into several sensor node
platforms. Extensive delay measurements on our iPAQ-
based prototype sensor node platform reveal the small
overhead of SensorWare to the algorithms (less than
0.3msec in most high-level operations). In return the
programmer of the sensor network receives
compactness of code, abstraction services for all of the
node’s modules, and in-built multi -user support.
SensorWare with its features apart from making
dynamic programming possible it also makes it easy
and efficient without restricting the expressiveness of
the algorithms.

I. INTRODUCTION

Wireless ad-hoc sensor networks (WASNs) have drawn
a lot of attention in recent years from a diverse set of
research communities. Researchers have been mostly
concerned with exploring applications such as target
tracking and distributed estimation, investigating new
routing and access control protocols, proposing new
energy-saving algorithmic techniques for these systems,
and developing hardware prototypes of sensor nodes.

Little concern has been given on how to actually
program the WASN. Most of the time, it is assumed that
the proposed algorithms are hard-coded into the memory
of each node. In some platforms the application developer
can use a node-level OS (e.g. TinyOS) to create the
application, which has the advantages of modularity, multi-

tasking, and a hardware abstraction layer. Nevertheless the
developer still has to create a single executable image to be
downloaded manually into each node. However, it is
widely accepted that WASNs will have long-deployment
cycles and serve multiple transient users with dynamic
needs. These two features clearly point in the direction of
dynamic WASN programming.

What kind of dynamic programmability do we want for
WASNs? Having a few algorithms hard-coded into each
node but tunable through the transmission of parameters, is
not flexible enough for the wide variety of possible WASN
applications. Having the ability to download executable
images into the nodes is not feasible because most of the
nodes will be physically unreachable or reachable at a very
high cost. Having the ability to use the network in order to
transfer the executable images to each and every node is
energy inefficient (because of the high communication
costs and limited node energy) and cannot allow the
sharing of the WASN by multiple users. What we ideally
want is to be able to dynamically program the WASN as a
whole, an aggregate, not just as a mere collection of
individual nodes. This means that a user, connected to the
network at any point, will be able to inject instructions into
the network to perform a given (possibly distributed) task.
The instructions will task individual nodes according to
user needs, network state, and physical phenomena,
without any intervention from the user, other than the
initial injection. Furthermore, since we want multiple users
to use the WASN concurrently, several resources/services
of the sensor node should be abstracted and made sharable
by many users/applications.

One approach of programming the WASN as an
aggregate is a distributed database system (e.g., [1]).
Multiple users can inject database-like queries to be
autonomously distributed into the network. The WASN is
viewed as a distributed database and the query's task is to
retrieve the needed information by finding the right nodes
and possibly aggregate the data as they are routed back to
the user. This approach ignores though the fact that
information is not always resident in nodes but sometimes
has to be retrieved by custom collaboration among a
changing set of nodes (e.g., target tracking). Thus even
though the database model is programming the network in
the desirable way, it is not expressive enough to implement
any distributed algorithm.

The other approach to WASN programmability that is
used by our framework, and is gaining momentum lately,

224

goodelle
Text Box
Appendix P:

is the "active sensor" approach. This term was used in [19],
to describe a family of frameworks that try to task sensor
nodes in a custom fashion, much like active networking
frameworks task data network nodes. The difference is that
while active networking tasks are reacting only to
reception of data packets, active sensor tasks need to react
to many types of events, such as network events, sensing
events, and timeouts. Active sensor frameworks abstract
the run-time environment of the sensor node by installing a
virtual machine or a high-level script interpreter at each
node. For example, single instructions of the scripts (or
bytecodes) can send packets, or read data from the sensing
device. Moreover, the scripts (or bytecodes) are made
mobile through special instructions, so nodes can
autonomously task their peers.

The difficulty in designing an active sensor framework
is how to properly define the abstraction of the run-time
environment so that one achieves compactness of code,
sharability of resources for multi-user support, portability
in many platforms, while at the same time keeping a low
overhead in delays and energy. Our proposal of such a
framework, called SensorWare, employs lightweight and
mobile control scripts that are autonomously populated in
sensor nodes after a triggering user injection. The sensor
node abstraction was made in such a way so that multi-user
accessibility is given to all of the node's modules (e.g.,
radio, sensing devices) while also creating other services
(e.g., real-time timers). Considerable attention was given to
the portability and expandability of the framework by
allowing the definition of new modules. By choosing the
right level of abstraction the scripts are compacted to 10s-
100s of bytes. For the non-trivial application examined in
section V.A, the SensorWare script is smaller than the code
of other frameworks with comparable capabilities in
algorithm expressiveness (e.g. other active sensors scripts,
binary images).

Our implementation and porting of SensorWare in
several sensor node platforms shows that the size of the
framework is small enough (<180Kbytes) to fit in most
current sensor node designs. Moreover, extensive
measurements in our prototype iPAQ-based sensor node
platform reveal the delay and energy overheads of
SensorWare. Every SensorWare script command has a
delay less than 0.3msec showing the limits of real-time
operation. Note that the script commands have a high-level
of abstraction (i.e., each command performs multiple low-
level operations). Experiments with both compiled and
interpreted versions of the scripts are conducted in order to
explore the energy trade-off space between different
representations of an algorithm.

Section II discusses in depth the nature of WASNs,
approaches to WASN programmability, and the general
idea of our approach. Section III presents related work.
Section IV presents SensorWare's architecture. Section V
illustrates how is SensorWare ported to a platform and
explains a moderately large script solving a real problem.
Section VI presents our current implementation and the

measurements we acquired through it. Finally, section VII
concludes the paper.

II. MOTIVATION AND BACKGROUND

A. Wireless Ad hoc Sensor Networks

Figure 1 shows an example of a WASN, highlighting
its main characteristics. An ad hoc network of miniature,
resource-limited, static, wireless, sensor nodes is being
used to monitor a dynamic physical environment. The use
of low power communication and the need for diversity in
sensing necessitates a multi-hop, distributed architecture
[22]. The computation capabilities at the nodes can be
leveraged for event detection via data fusion and
collaborative signal processing among nearby nodes, so
that higher bandwidth raw sensor data does not need to be
sent to the users. Typically a user queries the network
(consider the term “query” in the broad sense, not just
database query), the query triggers some reaction from the
network, and as the result of this reaction the user receives
the information needed. The reaction to the query can vary
from a simple return of a sensor value, to a complex
unfolding of a distributed algorithm among some or all of
the sensor nodes, such as a collaborative signal processing
algorithm or a distributed estimation algorithm.
Furthermore, there are multiple users who are transiently
connected to the network, each having different needs in
requested information. The WASN is there to
accommodate all or most of their needs.

Figure 1: Wireless Ad-hoc Sensor Network

These systems are quite different from traditional
networks. First, they have severe energy, computation,
storage, and bandwidth constraints. Second, their overall
usage scenario and the implications that this brings to the
traffic and the interaction with the users is quite different
from traditional networks. There is not a mere exchange of
data between users and nodes. The user will rarely be

 Collaborative
processing among

sensor nodes

Useful
information

Static
sensor node

Transient
mobile users

User query

event

225

interested in the readings of one or two specific nodes. The
user will be interested in some parameters of a dynamic
physical process. To efficiently achieve this, the nodes
have to form an application-specific distributed system to
provide the user with the answer. Moreover, the nodes that
are involved in the process of providing the user with
information are constantly changing as the physical
phenomenon is changing. Therefore the user interacts with
the system as a whole. The WASN is not there to connect
different parties together as in the traditional networking
sense but to provide information services to users.

As a consequence efficiently designed WASNs operate
in a fashion where a node's actions are affected largely by
physical stimuli detected by the node itself or nearby
nodes. Frequent long trips to the user are undesirable
because they are time and energy consuming. This
decentralized (i.e. not all traffic flows to/from user),
autonomous (i.e., user out-of-the-loop most of the time)
way of operating, is called “proactive computing” (as
opposed to interactive) by David Tennenhouse [27]. We
also adopt the term “proactive” throughout the paper to
denote an autonomous and non-interactive nature.

Efficiently designed WASNs are application-specific
distributed systems that require a different distributed
proactive algorithm as an efficient solution to each
different application problem. Given the nature of SNs,
one can coarsely define two classes of problems in their
design. First, the application-specific problem: How does
one find the most efficient distributed algorithm for a
particular problem? Second, the generic problem: How
does one dynamically deploy different algorithms into the
network, what is the programming model that will
implement these algorithms, and what general support does
one need from the framework?

For the first class of problems (i.e., finding efficient
algorithms for particular applications), there are many
research efforts in a variety of application problems (e.g.,
target tracking, sensor reading aggregation). In this paper
we will not expand into any particular application problem.
We only note, that in general, localized distributed
algorithms (i.e., distributed algorithms that act locally,
using only local information) are particularly efficient in
most WASN problems as they achieve small and well-
distributed energy consumption, thus prolonging the
network lifetime.

The second class of problems (i.e., what is the right
framework to express and dynamically deploy distributed
algorithms for WASNs) is the focus in this paper. We
describe our proposal of such a framework, called
SensorWare. SensorWare provides a language model
powerful enough to express the most efficient distributed
algorithms while at the same time hiding unnecessary low-
level details from the application programmer and
providing a way to share the resources of a node among
many applications and users that might concurrently use
the WASN. The language model is developed after

examining what are the properties of efficient algorithms
for SN (e.g., localized distributed algorithms), and in
conjunction with developing our own applications on real
sensor networks [3].

Equally important is the role of SensorWare in the
dynamic deployment of the distributed algorithms into the
network. As sensor nodes are memory -constrained, they
cannot store every possible application in their local
memory. Thus, a way of dynamically deploying a new
application is needed. Usually this means that a distributed
algorithm has to be incorporated in several sensor nodes,
which in turn means that these sensor nodes have to be
dynamically programmed. A user-friendly and energy-
efficient way of programming the nodes keeps the user
out-of-the-loop most of the time by allowing sensor nodes
to program their peers. By doing so, the user does not have
to worry about the specifics of the distributed algorithm
(because the information on how the algorithm unfolds lies
within the algorithm), and the nodes save communication
energy (because they interact with their immediate
neighbors and not with the user node through multi-hop
routes). The programming model of SensorWare is
designed in such a way, so as to facilitate the user-friendly
and energy-efficient dynamic deployment of an algorithm.
The user "injects" the query/program into the network, and
the query autonomously unfolds the distributed algorithm
into the nodes that should be affected.

B. Approaches to WASN programmability

As discussed in the introduction, one of the approaches
currently under investigation is a distributed database
model. A good example of this approach is the work done
at Cornell [1]. A similar scheme called DataSpace focusing
on location addressing has also been developed in Rutgers
[14]. Each node is equipped with a fixed database query
resolver. As queries arrive to a node, the local resolver
decides on the best, distributed plan to execute the query
and distributes the query to the appropriate nodes.
Although this approach takes into account the distributed
nature of the system and works well in several scenarios, it
does not take into account the proactive nature of the
system. The user is the central place of control and most
data flows to/from the user. This property can prove
inefficient in applications such as target tracking, where it
is better for nodes to form clusters around the target,
collaboratively compute the target's location and just send
the location information back to the user. Clearly a more
flexible way of programming the sensor network is needed
to enable this kind of behavior.

C. SensorWare

The SensorWare architecture is based on a scriptable
lightweight run-time environment, optimized for sensor
nodes that have limited energy and memory. This
environment securely hosts one or more simple, compact,
and platform-independent sensor-node control scripts. The
sensing, communication, and signal-processing resources

226

of a node are exposed to the control scripts that orchestrate
the dataflow to assemble custom protocol and signal
processing stacks. SensorWare has to also promote the
creation of distributed proactive algorithms based on the
scripting language described above. For this reason the
scripts are made mobile using special language commands
and directives. A script can replicate or migrate its code
and data to other nodes, directly affecting their behavior.
The replication or migration of a script will be called
“population” in the paper.

A usage scenario can be like the following: A user
sends a query to the sensor network. The query is a script,
a state machine in its simplest form, which is injected to
one or more sensor nodes. The script will describe among
other things how it is going to populate itself to other
nodes. The process of population can continue depending
on events and the current state. For example as the events
of interest are moving to a different area, the scripts can
move along with them, possibly trying to predict their next
move. The populated scripts will collaborate among
themselves in order to extract the information needed by
the user, and when this information is acquired it is sent
back to the user.

III. RELATED WORK

SensorWare falls under the family of active sensor
frameworks. Its closest relatives in the traditional networks
realm are Mobile Agent frameworks. Other active
networking frameworks exhibit similarities, such as the
scripting abstraction. In this section we only consider work
that tries to make WASNs programmable using active
sensor concepts. Therefore, general mobile -agent and
active-network platforms are not discussed, nor any
distributed database systems for WASNs are presented.
The interested reader can refer to [2] for a comprehensive
comparison of SensorWare with mobile agent platforms, as
well as with an active networking framework called PLAN
[10].

An active sensor framework for WASNs is currently
being developed in Berkeley under the name Maté. Maté
[19] is a tiny virtual machine build on top of TinyOS [12].
TinyOS is an operating system, designed specifically for
the Berkeley-designed family of sensor nodes, generically
named "motes" [11][12]. Maté's goal is to make a WASN
made of motes dynamically programmable in an efficient
manner. This includes the capability to dynamically
instruct a mote to execute any program, and expressing this
program in a concise way. They achieve this by building a
virtual machine (VM) for the motes. The virtual machine
supports a very simple, assembly-like language, to be used
for all needs of mote-tasking. Programs (called capsules)
written on the VM language can be injected to any node
and perform a task. Furthermore the capsules have the
ability to self-transfer themselves by using special
language commands. This model seems extremely like our
own in SensorWare. Indeed, Maté shares the same goals as

SensorWare as well as the same basic principles to achieve
these goals. Differences appear though when one looks
thoroughly into each platform's implementation.

Maté, like its substrate TinyOS, was built with a
specific platform in mind: the extremely resource-limited
mote. The main restriction for the developer of mote-
targeted frameworks (such as an OS or a VM) is memory.
The newest version of a mote called mica offers 128Kbytes
of program memory and 4Kbytes of RAM. An older
version called rene2 has 16Kbytes of program memory and
1Kbyte of RAM. Maté, with an ingenious architecture,
supports both platforms. Being so memory constrained,
Maté has to sacrifice some features that would make
programming easier and more efficient. First, a stack-based
architecture with an ultra-compact instruction set (all
instructions are 1 byte) is adopted which is reminiscent of
a low-level assembly language or the byte code of the Java
VM. This kind of model makes programming of even
medium-sized tasks difficult. Furthermore, due to the ultra -
compact instruction set, many 1-byte instructions are
needed to express a medium complexity algorithm, which
in turn leads to large programs, compared to a higher-level,
more abstracted scripting language. The size of programs
is important since the code is transmitted/received using
the radios of the nodes spending energy for every
transmitted/received bit. Second, the behavior of a program
when radio packets are received is rather rigid. A handler
to process such events is essentially stateless in Maté.
Thus, if a new pattern of packet processing is needed, a
new handler has to be transferred through the network.
This imposes an overhead in energy consumption and
execution time. Third, because there is only one context
(i.e., handler) per event (e.g., clock tick, reception of
packet) multiple applications cannot run concurrently in
one mote.

SensorWare cannot fit in the restricted memory of a
mote. SensorWare targets richer platforms that we believe
are going to be the mainstream in sensor node design in the
immediate future. Such platforms (e.g., [24]) include a
1Mbyte of program memory and 128Kbytes of RAM.
Having the luxury of more memory, SensorWare supports
easy programming with a high-level scripting language, as
well as concurrent multi-tasking of a node so that multiple
applications can concurrently execute in a WASN. The
programming model and properties of SensorWare are
extensively discussed in section IV.

Particularly instructive is to study the relationship
between SensorWare’s mobile scripting approach and the
mobile code approach in Penn State’s Reactive Sensor
Network [23] (RSN) project under DARPA’s SenseIT
program [25]. RSN’s focus is on providing an architecture
whereby sensor nodes can: (i) download executables and
DLLs, identified by URLs, from repositories or their
cache, (ii) execute the program at the local node using
input data which itself may be remotely located and
identified by a URL, and (iii) write the data to a possibly
remote URL. The RSN model is in essence Java’s applet

227

model generalized to arbitrary executables and data, and
combined with a lookup service. The focus of RSN is quite
different from SensorWare. Differences include: (i) RSN
provides a general lookup and download service, (ii) RSN
does not seek to provide a scripting environment with an
associated sensor node resource model for use by scripts,
and (iii) RSN’s notion of mobility is download oriented, as
opposed to SensorWare’s approach of a script which can
autonomously spawn scripts to remote nodes. RSN views
sensor nodes as network switches with dynamically
adaptable protocols, trying to directly map the motivation
and methods of classical active networks into sensor
networks. Unfortunately such an approach does not
address the basic problems of sensor networks. Although
one might be able to construct some distributed
applications using the above scheme, by no means the
creation and diffusion of distributed proactive applications
into the network is supported by its architecture.

Finally, extremely relevant is the work that is being
conducted in University of Delaware by Jaikaeo et al. [16]
called SQTL (Sensor Querying and Tasking Language).
Having the same goals as our research, but starting from a
different point (database-like queries), the researchers end
up with the same basic solution as SensorWare, namely a
tasking language for sensor networks. To lively
demonstrate the relevance to our work we are quoting an
excerpt from [16].”We model a sensor network as a set of
collaborating nodes that carry out querying and tasking
programmed in SQTL. A frontend node injects a message,
that encapsulates an SQTL program, into a sensor node
and starts a diffusion computation. A sensor node may
diffuse the encapsulated SQTL program to other nodes as
dictated by its logic and collaboratively perform the
specified querying or tasking activity.”

SQTL fits in a more general architecture for sensor
networks called SINA (Sensor Information Networking
Architecture) [26]. SINA uses both SQL-like queries as
well as SQTL programs. Some of its main features include:
1) hierarchical clustering, 2) attribute-based naming, 3) a
spreadsheet paradigm for organizing sensor data in the
nodes. SQL-like queries use these three features to execute
simple querying and monitoring tasks. When a more
advanced operation is needed though, SQTL plays the
essential role by programming (or “tasking” as the
researchers from Delaware call it) the sensor nodes and
allowing proactive population of the program. In SINA,
SQTL is used as an enhancement of simple SQL-like
queries. The framework is there mainly to support the
queries not the mobile scripts. As a consequence, SQTL
scripts do not have all the provisions that SensorWare
scripts have. The most important of them are: 1) Rich
sensor-node-related APIs (e.g. for networking, sensing). 2)
Diverse rules for mobility. A SQTL script can only specify
the nodes to be populated. SensorWare first checks if the
script is already in the remote node and offers a multitude
of possibilities depending on how many instances of the
script are already running in the remote node. 3) Code

modularity in order to share functionality and avoid
redundant code transfers 4) Support for multi-user scripts.
5) Resource management in the presence of multiple
scripts running in the node.

IV. ARCHITECTURE

First, we show SensorWare's place inside the overall
sensor node's architecture (Figure 2). The architecture of a
sensor node can be viewed in layers. The lower layers are
the raw hardware and the hardware abstraction layer (i.e.,
the device drivers). An operating system (OS) is on top of
the lower layers. The OS provides all the standard
functions and services of a multi-threaded environment
that are needed by the layers above it. The SensorWare
layer for instance, uses those functions and services offered
by the OS to provide the run-t ime environment for the
control scripts. The control scripts rely completely on the
SensorWare layer while populating around the network.
Static applications and services coexist with mobile scripts.
They can use some of the functionality of SensorWare as
well as standard functions and services of the OS. These
applications can be solutions to generic sensor node
problems (e.g., location discovery), and can be distributed
but not mobile. They will be part of the node's firmware.

Figure 2: The general sensor node architecture

Two things comprise SensorWare: 1) the language, and
2) the supporting run-time environment. The next two
subsections describe each of the parts in detail. A third
subsection discusses issues of portability and
expandability, and presents the final SensorWare code
structure.

A. The language

As discussed earlier, the basic idea is to make the nodes
programmable through mobile control scripts. Here the
basic parts that comprise the language will be described as
well as the programming model that emerges from the
parts.

SensorWare

OS

Hardware

HW abstraction
layer

Scripts
Apps,

Services

SensorWare

OS

Hardware

HW abstraction
layer

Scripts
Apps,

Services

Sensor node1 Sensor node2

Transient external user can inject script
Message

exchanging

Code
migration

228

First, a scripting language needs proper
functions/commands to be defined and implemented in
order to use them as building blocks (i.e., these will be the
basic commands of the scripts). Each of these commands
will abstract a specific task of the sensor node, such as
communication with other nodes, or acquisition of sensing
data. These commands can also introduce needed
functionality like moving a script to another node or
filtering the sensing data through a filter implemented in
native code. Second, a scripting language needs constructs
in order to tie these building blocks together in control
scripts. Some examples include: constructs for flow
control, like loops and conditional statements, constructs
for variable handling and constructs for expression
evaluation. We call all these constructs the "glue core" of
the language, as they combine several of the basic building
blocks to make actual control scripts.

Figure 3 illustrates the different parts of the
SensorWare language. Several of the basic
commands/functions are grouped in theme-related APIs.
We use the term API in a generic fashion, to denote a
collection of theme-related functions that provide a
programming interface to a resource or a service. As the
figure hints, there is a question on what happens when we
are dealing with different sensor node platforms that may
support different/additional kinds of modules. Do we allow
the set of APIs to be expandable? If so, who has the
authority to name and define new commands? We will
return to this topic with a solution in subsection C.

Figure 3: The language parts in SensorWare

As a glue core we can use the core from one of the
scripting languages that are freely available, so we are not
burdened with the task of building and verifying a core.
One such scripting language, that is well suited for
SensorWare's purposes, is Tcl [20], offering great
modularity and portability. Thus, the Tcl core is used as
the glue core in the SensorWare language. All the basic
commands, such as wait, or the ones included in the
APIs, are defined as new Tcl commands using the standard
method that Tcl provides for that purpose.

The set of APIs is basically a way of easily exporting
services and shared resources to the scripts. For example,

the Timer API defines and sets/resets real time timers,
while the Mobility API provides the basic functions to the
scripts so they can transfer themselves around the network.

A.1 The general programing model

As discussed earlier, according to the proactive
distributed model the scripts will look mostly like state
machines that are influenced by external events. Such
events include network messages from peers, sensing data,
and expiration of timers. The programming model that is
adopted is equivalent to the following: An event is
described, and it is tied with the definition of an event
handler. The event handler, according to the current state,
will do some (light) processing and possibly create some
new events or/and alter the current state. Figure 4
illustrates SensorWare's programming model with an
example.

Figure 4: The programming model

The behavior described above is achieved through the
wait command. Using this command, the programmer
can define all the events that the script is waiting upon, at a
given time. Examples of events that a script can wait upon
are: i) reception of a message of a given format, ii)
traversal of a threshold for a given sensing device reading,
iii) filling of a buffer with sensing data of a given sampling
rate, iv) expiration of several timers. When one of the
events declared in the wait command occurs, the
command terminates, returning the event that caused the
termination. The code after the wait command processes
the return value and invokes the code that implements the
proper event handler. After the execution of the event
handler, the script moves to a new wait command, or
more usually it loops around and waits for events from the
same wait command.

 The glue core
(The basic script

interpreter)

Mobility API

Radio API

Sensor 1 API

wait command

id command

Timer API

Extensions to the core

Sensor 2 API

GPS API

Optional
modules . . .

. . .

Event handler a

Event handler b

Initialization

Exit code

 Zzz
a?
b?

 Zzz
a?
c?

Event handler a

Event handler c

Example

code Zzz
a?

b?
c? wait for event

a or b or c

229

B. The run-time environment

As important are the scripts in the SensorWare
platform, equally important is the run-time environment
that supports them. Figure 5 illustrates the basic tasks
performed by the environment. We separate tasks into
fixed and platform-specific. The fixed tasks are always
included in a SensorWare implementation, while the
platform-specific depend on the existence of specific
modules and services in the node platform. Again, the
problem of expandability and portability appears. Do we
allow any developer to arbitrarily define and create any
tasks, according to the specific needs of each platform?
Subsection C addresses this question.

Figure 5: Tasks in the SensorWare run-time
environment

The Script Manager is the task that accepts all requests
for the spawning of new scripts. It forwa rds the request to
the Admission Control task and upon receiving a positive
reply, it initiates a new thread/task running a script
interpreter for the new script. The Script Manager also
keeps any script-related state such as script-data for as long
as the script is active. Possible attacks, such as snooping or
spoofing, are banned by the strict security model. The
script manager also keeps a script-code cache in order to
reduce code transmissions over the wireless channel. The
Admission Control and Policing of Resource Usage task,
as the name reveals, takes all the script admission
decisions, makes sure that the scripts stay under their
resource contract, and most importantly checks the overall
energy consumption. If the overall consumption exhibits
alarming characteristics (e.g., the current rate cannot
support all scripts to completion) the task selectively
terminates some scripts according to certain SensorWare
policies. Resource management and the security model are
not discussed in this paper. The interested reader can refer
to [2].

The run-time environment also includes "Resource
Abstraction and Resource Metering" tasks (sometimes
referred to as "Resources Handling" tasks for brevity).

Each task supports the commands of the corresponding
APIs and manages a specific resource. There are two fixed
tasks in this category since every platform is assumed to
have at least one radio and a timer service. The “Radio”
task manages the radio: i) it accepts requests from the
scripts about the format of network messages that they
expect, i) it accepts all network messages and dispenses
them to the appropriate scripts according to their needs,
and finally iii) measures the radio utilization for each
script, a quantity that is needed by the “Admission Control
& Policing of Resource Usage” task. The second fixed
task, the "Timer service", accepts the various requests for
timers by all the scripts and manages to service them using
a real-time timer the embedded system provides. In
essence the tas k provides many virtual timers relying on
one timer provided by the system. According to platform
capabilities a specific porting of SensorWare may run
additional tasks For instance, a “Sensor Abstraction” task
manages a sensing device. It accepts all requests for sensor
data from all the scripts and decides on the optimal way to
control the sensing device (e.g., setting the A/D sampling
rate). It also measures the sensing device utilization for
each script. Figure 6 depicts an abstracted view of
SensorWare's run-time environment for an example
platform with one sensing device.

Figure 6: Abstracted view of SensorWare's run-time
environment for an example platform

Most of the threads running are coupled with a generic
queue. Each thread "pends" on its corresponding queue,
until it receives a message in the queue. When a message

 Admission Control &
Policing of Resource

Usage

Script Manager
(script state keeping,
spawns new scripts)

Resource Abstraction &
Resource Metering Tasks

Radio/Networking

Sensor 1

Timer service

generic queue

event

interest in event

system thread/task
script thread/task

Radio

Sensing

CPU &timers

Script Manager
Admission

control

Script 1

Script n

device driver System msg (e.g.,
req, reply, resource
metering info)

Radio

Sensing
device

Timers
cpu ctrl

Resource metering info from
all 3 resource handling tasks

The Manager spawns a new
thread for every new script.

. . . .

Fixed tasks

Platform specific

Sensor 2

Paging radio
. . .

230

arrives it is promptly processed. Then the next message
will be fetched, or if the queue is empty, the thread "pends"
again on the queue. A queue associated with a script thread
is receiving events (e.g., reception of network messages,
sensing data, or expiration of timers). A queue associated
with one of the resource handling tasks, receives events of
one type (from the specific device driver that is connected
to), as well as messages that declare interest in this event
type. For instance, the Sensing resource-handling task is
receiving sensing data from the device driver and interests
on sensing data from the scripts. The Script Manager
queue receives messages from the network that wish to
spawn a new script. There are also system messages that
are exchanged between the system threads (like the ones
that provide the Admission Control thread with resource
metering information, or the ones that control the device
drivers).

C. Portability and expandability of SensorWare

In the previous subsections the problem of platform
variability was revealed. Here we will present a solution
for SensorWare's code structure. There are two kinds of
platform variability: 1) capabilities variability (i.e. having
different modules, such as sensing devices, GPS), 2)
HW/SW variability (i.e. although the capabilities are the
same we have different OS and/or specifics of hardware
devices). We will explore solutions for each kind in two
different subsections.

C.1 Capabilities variability

Different platforms may have different capabilities. For
instance, imagine that one platform A has a radio and a
magnetometer, while another platform B has two radios (a
normal and a paging one) and a camera. How will we
abstract the two platforms with the same framework? Since
SensorWare's building blocks are the interface to the
abstracted modules/services, we can allow an expandable
API. Further, most modules/services will need a supporting
task (as described in subsection B), so we can allow the
definition and addition of arbitrary tasks in SensorWare's
run-time environment. This kind of solution would create
severe problems in the manageability of the code by
different developers. SensorWare advocates a more
modular and well-structured solution. SensorWare
declares, defines, and support virtual devices (an idea
triggered by Linux's virtual devices). Any module or
service is represented as a virtual device. For example a
radio, a sensing device, the timer service, a location
discovery protocol are all view as virtual devices.

There is a fixed interface for all devices. More
specifically there are four commands that are used to
communicate with the device. They are: query, act ,
createEventID, and disposeEventID. Query
asks for a piece of information from the device and expects
an immediate reply. Act instructs the device to perform
an action (e.g., modify some parameters of the device, or if
the device is an actuator perform an action).

CreateEventID describes a specific event that this
device can produce and gives this event a name/ID. The
name can be used subsequently from the wait command
to wait on this specific event. DisposeEventID just
disposes that name. Additionally, if a device can produce
events, a task is needed to accept create/disposeEventID
commands and react to wait commands that are waiting on
the device's events. The task definition, and the parsing of
the arguments of the four commands are defined in a
custom fashion by the developer. This is where the
expandability stems from, while at the same time keeping a
structured form.

C.2 HW/SW variability

Even though two platforms may have the same
capabilities (i.e., the same modules/services), they may
rely on different hardware and/or operating system. In
order to facilitate the porting process it is desirable to
clearly separate the OS and HW-specific code from the
fixed code and the capabilities-definition code. To achieve
this we need to identify the dependencies of the code to the
OS and the hardware and create abstracted wrapper
functions. The wrapper functions are actually defined in
separate sections of the code (i.e., different .c files) so that
the developer can easily identify the points of change for a
porting procedure.

From the OS we need support to create and initiate
threads/tasks, and support to define, post, and pend into
mailboxes/queues. Thus we create wrapper functions for
these operations. We also need low-level functions to
access the hardware, thus we create wrapper functions
around them (these functions will depend on the specific
capabilities the platform supports). Figure 7 illustrates
SensorWare's code structure.

Figure 7:SensorWare code structure

Changed for porting

Never changed Changed with platform
 capabilities

Code
dependency

Platform independent
code

Device Definition
code

OS specific code

• Register all devices
• Define functions for

options parsing

HW access code
Definition of threads
Definition of msg passing

Tcl

APIs

Script manager

Admission control

Device 1 code

Device 2 code

231

V. CODE EXAMPLES

In order to make SensorWare more concrete, we will
present code examples and porting details in the next two
subsections. The first one involves the creation of a
specific application using the SensorWare script language.
The second example, present details on how to port
SensorWare in a specific platform. More specifically, we
will show how to define new devices and how to connect
the framework with the existing OS and hardware.

A. Script example

In this subsection we will present the code for the
snapshot aggregation application with multiple (static)
users support. The specific problem that we are solving is
to find the global maximum among current sensor node
readings and report it back to the user. Furthermore,
multiple users may request this maximum while the
algorithm is running (i.e., time to populate the script into
the network, collect and aggregate data towards the user).
The users are accommodated with the minimum traffic,
without the need to launch a different application/script for
each user. Finding the minimum, average, or any other
aggregation function, among different kinds of sensor node
readings or state, can be easily achieved by trivial
modification in our script. More on aggregation
applications in general can be found in [3] and [4].

Before proceeding with the script code, it is beneficial
to describe the internal workings of two Sensorware
commands, namely "replicate" and "wait".
Replicate (possibly) transfers the script that it was
called from, to other node(s). It does not blindly pack and
transmit the code and state of the script like all other active
sensor approaches currently do. Replicate first starts
with a transmission of "intention to replicate" message,
carrying the name of the script and the issuing user. If the
same script already exits in the other node(s)
replicate, according to options, may choose not to
transfer the code, may choose to initiate a second script of
the same type in the node, or if the script has multi-user
support, send an "add user" message. By default,
replicate will send the "intention to replicate" message
to avoid unnecessary code transfers, and will spawn a
second script only if the requesting user is different by the
existing one. Furthermore, it is assumed by default that the
parent of the script (i.e., the node that spawned the script to
the current node) already has the code for the script, thus
does not need an "intention to replicate" message. The
arguments of the replicate command are:

replicate [-[f] [d] [p] [m] [rc] [rs] [ru]] [node_list]
[] means optional
f : forced replicate, no "intention to replicate" message sent
d: duplication of script at remote node irrespective of user
p: parent not assumed to have script in memory
m: script supports multi-users. Do not spawn new script in remote

node, instead send "add user" message to existing script

rc: return nodes that code was transferred
rs: return nodes that spawned new script
ru: return nodes "add user" message was sent
by default option rsru is in effect.
node_list: nodes to replicate. Leaving this field empty implies a
broadcast to neighbors. Parent is excluded unless p is chosen.

It is also useful to reveal some of the details of the
wait command. Wait returns when an event named in
the command's arguments occurs. In order to expedite
processing of the event by the subsequent scrip code, the
wait command sets the following predefined variables:

event_name : the name of the occurred event. It indicates the
device that caused the event and the type of the event
event_data: data returned by the event
If the event is a packet reception the following are defined and
set: msg_sender, msg_body

 Listing 1 shows the actual SensorWare script.
SensorWare commands and reserved words are in
boldface. Variable names are in italics. Reserved variable
name are in boldface and italics. Basic Tcl knowledge is
needed to follow the script, although we do explain most of
the code step by step. The example is sufficient to illustrate
the programming style and the use of some of the most
important commands, while solving a real problem.

set need_reply_from [replicate -m]
set maxvalue [query sensor value]
if {$need_reply_from == ""} { send $parent $maxtemp; exit }
else { set return_reply_to $parent }
set first_time 1
while {1} {
 wait anyRadioPck // "anyRadioPck" is a predefined eventID
 if { $msg_body ==add_user } {
 if { $first_time == 1 } {
 send $parent $msg_body
 set first_time 0
 }
 set return_reply_to "$return_reply_to $msg_sender"
 }else {

set maxvalue [expr {($maxvalue< $msg_body) ? $maxvalue
: $ msg_body }]

set n [lsearch $need_reply_from $ msg_sender]
set need_reply_from [lreplace $need_reply_from $n $n]

 }
 foreach node $return_reply_to {
 if { ($need_reply_from=="")||($need_reply_from==$node)} {
 send $node $maxvalue
 set n [lsearch $return_reply_to $node]
 set return_reply_to [lreplace $return_reply_to $n $n]
 }
 }
 if {$return_reply_to==""} {exit}
}

Listing 1: Multi-user aggregation code

The specific script keeps two important variables at
each node: a list of nodes that replies are needed from, and

232

a list of nodes that replies are due. The first command tries
to replicate the script to all the neighbors (except the
parent), declaring that this is a multi-user script. The nodes
that the script was spawned or an "add user" message was
sent are returned and added to the need_reply_from
variable. The second command reads the current value
from the sensing device and sets the maxvalue variable
with it. If there are no nodes to return a reply the script
sends the maxvalue to the parent node and exits. Otherwise
the parent node is added to the list return_reply_to and the
big loop begins. Each time a packet is received we check if
it is a data reply or an "add user" message and modify our
lists and maxvalue accordingly. To graphically see how
this algorithm works, refer to [4].

The script is its raw form is 882 bytes. If reserved
words and variable names are compressed, the script
becomes 277 bytes. If furthermore, we compress this
intermediate form with gzip, we end up with 209 bytes.
This is a compact description for this non-trivial algorithm.
An equivalent SQTL script has a size in the order of 1000
bytes (based on the simpler algorithm of aggregation for a
single user and without replication checking). Building the
same algorithm in Maté was proven impossible due to its
limited heap and stack sizes. There was not enough space
to hold the need_reply_from and return_reply_to lists.
Even with a larger memory space though, Maté's stack
based architecture and lack of higher-level services results
in code of many instructions even for simple tasks. As
stated earlier, Maté's restrictions are a design choice,
coming from the desire to support the restrictive
underlying platform. Finally, C code is written for this
algorithm, with ext ernal references to SensorWare
functions. The compiled native code has a size of 764
bytes (without including the size of SensorWare functions
called from within the native code).

B. Porting SensorWare to a platform
In this subsection we will present some of the issues

while porting SensorWare to a platform. We consider our
iPAQ-based prototype as the testbed. A full description of
the platform can be found in section VI.A. Here it is
sufficient to know that the node has one radio and one
sensing device, and that the underlying OS is Linux.

First, we should add the proper capabilities to
SensorWare by creating a virtual device for the sensing
device (the radio has a virtual device by default). This
means name and register the device by calling the function:

create_device(char* name, int (*query)(), int (*act)(), void*
(*createEventID)(), int (*disposeEventID)(), void* (*task)())

As it can be seen by the declaration of the
create_device function we need to define the four functions
to parse the arguments of the four standard interface
commands, plus a function to be executed by the thread/
task of the device. Not going any further into the definition
of these functions, we are sufficed to say that they are very
similar to the radio device functions.

The next step is to define the OS-specific code. More
precisely, have the ability to create threads and use
mailboxes/queues. For the definition and creation of
threads we use the pthreads (i.e., posix threads) provided
by Linux. Even though mailboxes are available in Linux,
we chose to construct our own structures using
semaphores. Finally, the hardware -specific code is directly
provided by the Linux's device drivers.

VI. IMPLEMENTATION

Some active sensor frameworks choose to evaluate
their performance by showing their expressiveness. They
create a distributed algorithm for a particular application
and compare it against a more centralized approach
(usually a distributed database approach). We believe that
the energy savings from such comparisons are evident for
any active sensor framework and do not add value to the
investigation and evaluation of the framework. To
evaluate SensorWare we chose to implement it and
measure the overheads we are paying for dynamic
programmability. How much memory do SensorWare and
its components occupy? How much delay is introduced by
various SensorWare operations? How much slower and
consequently how much more energy-consuming is
SensorWare compared to native code approaches? These
questions are answered in the following subsections. We
begin by a description of the implementation platform.

A. Platform description

The prototype platform used in the implementation and
evaluation of SensorWare was built around the iPAQ 3670
[15]. The iPAQ has an Intel StrongARM 1110 rev 8 32 bit
RISC processor, running at 206Mhz. The flash memory
size is 16Mbytes and the RAM memory size 64Mbytes.
The OS installed is a familiar v0.5 Linux StrongARM port
[9], kernel version 2.4.18-rmk3. The compiler used, is the
gcc cross-compiler. A wavelan card [28] is used as the
radio device and a Honeywell HMR-2300 Magnetometer
[13] as the sensing device.

Figure 8: The implementation platform

WaveLan
radio

magnetometer

233

SensorWare is also ported into the Rockwell WINS
nodes [24] that also have a StrongARM processor, but only
1Mbyte of flash memory. Both eCos [6] and microC/OS-II
[18] were used as operating systems for these nodes.

B. Memory size measurements

The first question to answer is how much size does the
whole framework occupy. Figure 9 shows that the total
size is 179Kbytes and it is consisted of 74Kbytes of Linux
specific code (e.g., kernel, libraries), 74Kbytes of a
stripped down Tcl core called tinyTcl, 22Kbytes of
SensorWare code and 8Kbytes of platform dependent code
(i.e., functions to access the hardware). The bottom part of
the figure shows the breakdown of the SensorWare core
part into smaller parts.

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

C
od

e
Si

ze
 (b

yt
es

) linux specific

platform dependent code

SensorWare Core

tinytcl core

SensorWare binary breakdown

4692

2728

2432

400

3284

508

1828

696

5372

0 1000 2000 3000 4000 5000 6000

script manager

device manager

delta queue

event object

mailbox

main

user terminal

timer service

radio device

binary size (bytes)

Figure 9: Code size breakdown

C. Delay measurements

The next question to answer is how long do different
basic commands need to execute. We measured each
command individually 100 times under the same basic
conditions (only one script executing) and derived an
average and standard deviation for the delay. Most
commands exhibited negligible variance. All the
commands, except the ones that used the radio and the one
that spawned a 50byte script, have an execution time less
than 0.3msec.

0
10
20
30
40
50
60
70

query wait
packet

id list dev
events

list dev
param

command

de
la

y
(u

s)

0

2000

4000

6000

8000

10000

spawn (local) spawn (one hop) send (one hop)

command

de
la

y
(u

s)

0
50

100
150

200
250

300
350

send
(local)

query
location

set/wait
timer

dispose
eventID

create
eventID

command

de
la

y
(u

s)

Figure 10: Execution times of SensorWare commands

The top graph of the figure 10, shows commands with
less than 0.06msec delay. The last two commands that
return some part of the device's state are internal to
SensorWare and not exported for script use. The middle

234

graph shows the most time consuming commands. The
first one spawns a 50 byte script locally. The other two
commands use the radio to spawn a script in a neighboring
node and send a message in a neighboring node. The delay
for achieve these two operations is dominated by the radio
transmission time. Note that the send command and some
operation modes of the spawn command, do not wait for
the whole operation to finish, instead they return as soon as
they hand off the task to the radio device. In the graph, the
total operation time is shown. The bottom graph of figure
10, shows yet another set of delays. Of particular interest is
the set/wait timer delay. For this instance, we measure the
delay to set a zero-valued timer and wait for its expiration.
In essence we are measuring the overhead of real-time
measurements in scripts. The overhead is 0.25msec with
very small variation. Thus, we can internally subtract this
number each time a script sets a timer, in order to measure
the true desired time.

In order to acquire all delay measurements we used the
gettimeofday() system call. This function is based on the
timer count register found in the StrongARM processor.
The accuracy of this method is measured to be 1µsec.

D. Energy measurements - related tradeoffs

Finally, we are interested in knowing the energy
overhead from the interpreted nature of SensorWare. For
that purpose we compare the interpreted version of the
script presented in section V.A., with a compiled native
code version of the same algorithm. The native version
uses the services that SensorWare provides by directly
calling the appropriate functions. Since most of the work
inside a script is done by the SensorWare commands and
services (which are implemented in native code) we do not
expect a significant change when we resort to fully native
code. Indeed, we measured an 8% speedup of the native
code compared to the interpreted code. We acquired this
number by measuring the total execution times of both
codes, and excluding time periods when the code was
accessing the radio, or was waiting for events to occur.
Essentially, the time we measured, was the non-idle CPU
time. This time is linearly coupled with the energy spent on
the CPU, assuming that we have a mechanism to shut
down the CPU during idle time. Thus a reduction of 8% in
the non-idle time, directly translates to a reduction of 8%
in CPU-energy spent.

As we already mentioned in section V.A, the script has
a final compressed size of 209 bytes, while the native code
has a size of 764 bytes. So even if the native version
executes faster (and potentially consumes less energy, by
allowing to shut down the CPU during idle time), there is
an energy overhead related to its transmission. The
wavelan radio in typical operation would spent 0.47mJ to
transmit the script, and 1.10mJ to transmit the native code
(including the MAC overhead). Thus, the energy
difference between the two transmissions is 0.63mJ. The
typical power for the StrongARM is 230mW , so 0.63mJ
are spent in 2.7msec. From these numbers we deduce that

if the native code uses StrongARM for 2.7msec less than
the interpreted code then its initial transmission energy
overhead is balanced. For the particular algorithm that we
tested, 8% speedup is translated into 1.2msec gain in
absolute numbers. So for the particular algorithm
transmitting and executing native code is not beneficial
overall. For applications with heavier computation
workload it might be desirable, from an energy viewpoint,
to transmit and execute native code. Note though that we
would sacrifice the portability of the code in several
platforms, and most importantly we would sacrifice the
code safety offered by the scripts (refer to [2] for more
information on scripts code safety). Furthermore, most
sensor node platforms have a much slower radio than
wavelan, which in turn means that they spend more energy
to transmit the same amount of bytes , changing the
tradeoff points. In conclusion, for most sensor node
platforms, one would have to have a very computation-
intensive algorithm to prefer the native code over
SensorWare scripts .

VII. CONCLUSIONS

In this paper we argue that the development of a
framework based on a scripting abstraction where the
scripts are mobile, will help bring many desired properties
in sensor networks. It will make the sensor networks
programmable and open to external users and systems,
keeping at the same time the efficiency that distributed
proactive algorithms have. We explain the framework's
architecture and present code examples. Through our
implementation we are able to measure the time and
energy overheads that we are paying for programmability
and explore some part of the solution space for sensor node
run-time environment abstractions.

VIII. REFERENCES

[1] P. Bonnet, J. Gehrke, and P. Seshadri, “ Querying the Physical
World”, IEEE Personal Communications, October 2000.

[2] Withheld to preserve authors anonymity.
[3] Withheld to preserve authors anonymity.
[4] Withheld to preserve authors anonymity.
[5] L. Clare, G. Pottie, J.R. Agre, “Self-Organizing Distributed Sensor

Networks”, Proceedings of SPIE conference on Unattended
Ground Sensor Technologies and Applications, pp. 229-237, April
1999.

[6] eCos: Embedded Configurable Operating System,
http://sources.redhat.com/ecos/

[7] D.Estrin, R.Govindan, J.Heidemann (Editors), “Embedding the
Internet”, Communications of the ACM. Vol. 43, no 5, pp. 38-41,
May 2000.

[8] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks”, ACM
Mobicom Conference, Seattle, WA, August 1999.

[9] Familiar Project, “http://familiar.handhelds.org”.
[10] M. Hicks, P. Kakkar, J. Moore, C. Gunter and S. Nettles, “PLAN:

A Packet Language for Active Networks”, Proceedings of the
International Conference on Functional Programming (ICFP '98),
1998.

235

[11] J. Hill and D. Culler, "A wireless embedded sensor architecture for
system-level optimization", Intel Research IRB-TR-02-00N, 2002.

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister,
“System Architecture Directions for Networked Sensors”,
Proceedings of ASPLOS-IX, November 2000 Cambridge, MA,
USA.

[13] Honeywell HMR-2300 Magnetometer,
http://www.ssec.honeywell.com.

[14] T. Imielinski and S Goel, “DataSpace: Querying and monitoring
deeply networked collections in physical space”, IEEE Personal
Communications, Oct. 2000.

[15] iPAQ 3670, http://thenew.hp.com/.
[16] C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Querying and

Tasking of Sensor Networks”, SPIE's 14th Annual International
Symposium on Aerospace/Defense Sensing, Simulation, and
Control (Digitization of the Battlespace V), Orlando, Florida, April
26-27, 2000.

[17] D. Kotz, R. Gray, “Mobile Agents and the Future of the Internet”,
in ACM Operating Systems Review, 33(3), 1999.

[18] J. Labrosse, " MicroC/OS-II: The Real Time Kernel", CMP Books,
November 1998.

[19] P. Levis, D. Culler, “Maté: A Tiny Virtual Machine for Sensor
Networks.” Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS X), October 5-9 2002.

[20] J. K. Ousterhout, “Scripting: higher level programming for the 21st
Century”, Computer, vol.31, (no.3), IEEE Comput. Soc, March
1998. p.23-30.

[21] J. K. Ousterhout, “Tcl and the Tk toolkit”, Addison-Wesley, 1994.
[22] G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network

Sensors”, Communications of the ACM. Vol. 43, no 5. May 2000.
[23] Reactive Sensor Networks, http://strange.arl.psu.edu/ RSN/
[24] Rockwell WINS nodes, http://wins.rsc.rockwell.com/
[25] SenseIT program,

http://www.darpa.mil/ito/research/sensit/index.html
[26] C. Srisathapornphat, C. Jaikaeo, and C. Shen, “Sensor Information

Networking Architecture”, International Workshop on Pervasive
Computing (IWPC'00), Toronto, Canada, August 21-24, 2000.

[27] D. Tennenhouse, “Proactive Computing”, Communications of the
ACM. Vol. 43, no 5, pp.43-50, May 2000.

[28] Wavelan card, “http://www.orinocowireless.com”

APPENDIX

A. The SensorWare Language

SensorWare supports Tcl syntax and the following 41
Tcl commands: append, array, break, case, catch, concat,
continue, error, eval, expr, for, foreach, format, global, if, incr,
info, join, lappend, lindex, linsert, list, llength, lrange, lreplace,
lsearch, lsort, proc, regexp, regsub, rename, return, scan, set,
split, string, trace, unset, uplevel, upvar, while.

There are 11 other commands defined by SensorWare
that essentially abstract the node's run-time environment.
They are:

spawn [-[f] [d] [p] [m] [rc] [rs] [ru]] [<node_list>] <code>
[<variable_list>]

replicate [-[f] [d] [p] [m] [rc] [rs] [ru]] [<node_list>]
[<variables_list>]

migrate [-[f] [d] [p] [m] [rc] [rs] [ru]] [<node_list>]
[<variables_list>]

send [<node_id>][:<script_name>] <message>

setTimer <timer_name> <value>

disposeTimer <timer_name>

query <device_name> [var_arg...]

act <device_name> [var_arg...]

createEventID <device_name> <eventID> [var_arg...]

disposeEventID <device_name> <eventID>

wait <event_name>...

Legend: [] indicates optional, < > indicates a variable
(either a Tcl variable or an SensorWare variable such as an
eventID or a timer name), the suffix "_list" in variable
names indicates that the variable is a list (i.e., zero or more
elements). The symbol "var_arg ..." indicates variable
arguments. The modifier "..." indicates a list of arguments
of the preceding argument type.

There are 6 reserved Tcl variable names. These are:
parent, neighbors, event_name, event_data, msg_sender,
msg_body .

There are 7 reserved words used as arguments in
some commands. By reserving words for commonly used
features we compact the scripts further. These are:
anyRadioPck, anyTimer, add_user, sensor, value, radio, timer.

236

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	DISTRIBUTION AND AGGREGATION
	Modeling and Simulation
	SensorSim
	SensorVis

	Communications and Networking Protocols
	Spatial Addressing
	Low-Power Network Routing

	GPS-less Localization

	DECLARATIVE LANGUAGES AND EXECUTION ENVIRONMENT
	Graphical Soldier Interfaces
	First Generation Graphical User Interface
	Second Generation Graphical User Interface
	Third Generation Graphical User Interface

	Sensor Placement Tool

	PLATFORMS
	Embedded Linux on IPAQ™
	DSN Linux Contributions
	Video Surveillance using IPAQ

	GPS-Synchronized Communications

	FIELD EXPERIMENT SUMMARY
	SITEX00, 29 Palms, August 2000
	SITEX01, 29 Palms, March 2001
	SITEX02, 29 Palms, November 2001

	DELIVERABLES SUMMARY
	Deliverables for FY99
	
	Distribution and Aggregation
	Declarative Languages and Execution Environment
	Platforms

	Deliverables for FY00
	
	Distribution and Aggregation
	Declarative Languages and Execution Environment

	Deliverables for FY01
	
	Distribution and Aggregation
	Declarative Languages and Execution Environment
	Platforms

	Deliverables for FY02
	
	Distribution and Aggregation
	Platforms

	PERSONNEL
	USC Information Sciences Institute Personnel
	UCLA Personnel
	Virginia Tech Personnel

	PUBLICATIONS
	LIST OF ACRONYMS
	LIST OF ADDENDA
	simulating networks.pdf
	MAIN MENU
	PREVIOUS MENU
	Search CD-ROM
	Search Results
	Print

